设函数f(x)=
若f(m)<f(-m),则实数m的取值范围是( )
A.(-1,0)∪(0,1) B.(-∞,-1)∪(1,+∞)
C.(-1,0)∪(1,+∞) D.(-∞,-1)∪(0,1)
科目:高中数学 来源: 题型:
偶函数f(x)满足f(x-1)=f(x+1),且在x∈[0,1]时,f(x)=x,则关于x的方程f(x)=
x在x∈[0,4]上解的个数是( )
A.1 B.2
C.3 D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
设f(x)=loga(1+x)+loga(3-x)(a>0,a≠1),且f(1)=2.
(1)求a的值及f(x)的定义域.
(2)求f(x)在区间
上的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
执行如图所示的程序框图,若输入如下四个函数:
①y=2x; ②y=-2x; ③f(x)=x+x-1;④f(x)=x-x-1.
则输出函数的序号为( )
![]()
A.① B.②
C.③ D.④
查看答案和解析>>
科目:高中数学 来源: 题型:
某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.
(1)写出每户每月用水量x(吨)与支付费用y(元)的函数关系;
(2)该地一家庭记录了去年12个月的月用水量(x∈N*)如下表:
| 月用水量x(吨) | 3 | 4 | 5 | 6 | 7 |
| 频数 | 1 | 3 | 3 | 3 | 2 |
请你计算该家庭去年支付水费的月平均费用(精确到1元);
(3)今年干旱形势仍然严峻,该地政府号召市民节约用水,如果每个月水费不超过12元的家庭称为“节约用水家庭”,随机抽取了该地100户的月用水量作出如下统计表:
| 月用水量x(吨) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
据此估计该地“节约用水家庭”的比例.
查看答案和解析>>
科目:高中数学 来源: 题型:
设D是函数y=f(x)定义域内的一个区间,若存在x0∈D,使f(x0)=-x0,则称x0是f(x)的一个“次不动点”,也称f(x)在区间D上存在“次不动点”,若函数f(x)=ax2-3x-a+
在区间[1,4]上存在“次不动点”,则实数a的取值范围是( )
A.(-∞,0) B. ![]()
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com