精英家教网 > 高中数学 > 题目详情
已知复数z=log2(m2-2m-2)+(m2+2m-15)i,(m∈R),试求当m为何值时,
(1)复数z为纯虚数;
(2)复数z对应的点Z在第三象限.
考点:复数代数形式的乘除运算
专题:数系的扩充和复数
分析:(1)由z的实部等于0且虚部不等于0求解m的值;
(2)由z的实部小于0且虚部小于0联立不等式组求解m的取值范围.
解答: 解:(1)由题意得:
log2(m2-2m-2)=0
m2+2m-15≠0

m2-2m-2=1
m2+2m-15≠0

解得
m=-1或m=3
m≠-5且m≠3

∴m=-1.
(2)由题意,若复数z对应的点Z在第三象限,
log2(m2-2m-2)<0
m2+2m-15<0

解得:-1<m<1-
3
1+
3
<m<3
点评:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DC∥AB,∠BAD=90°,且AB=2AD=2DC=2PD=4,E为PA的中点.
(Ⅰ)证明:DE∥平面PBC;
(Ⅱ)证明:DE⊥平面PAB;
(Ⅲ)求三棱锥A-PBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=x2-ax+1(a为常数),x∈[-1,1]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={x|4-x2>0},若B={x|(x-m)(x-2m+1)≤0},且B⊆A,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角A,B,C是三角形ABC的三个内角,且tanA=7,tanB=
4
3

(Ⅰ)求tan(A+B)的值;
(Ⅱ)求角C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对一切实数x,y均有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(x)的解析式;
(2)若函数g(x)=(a+1)f(x)-a[f(x+1)-x]在区间(-1,2)上是单调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中装有4个白棋子、3个黑棋子,从袋中随机地取棋子,设取到一个白棋子得2分,取到一个黑棋子得1分,从袋中任取4个棋子.
(1)求得分X的分布列;
(2)求得分大于6的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知平面ABCD⊥平面BCEF,且四边形ABCD为矩形,四边形BCEF为直角梯形,∠CBF=90°,BF∥CE,BC⊥CE,DC=CE=4,BC=BF=2,G为CE中点.
(1)作出这个几何体的三视图(不要求写作法);
(2)设P=DF∩AG,Q是直线DC上的动点,判断并证明直线PQ与直线EF的位置关系;
(3)求直线EF与平面ADE所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex+ax,(其中e为自然对数的底数),
(1)设曲线y=f(x)在x=1处的切线与直线(e-1)x-y=1平行,求a的值;
(2)若对于任意实数x≥0,f(x)>0恒成立,试确定实数a的取值范围.

查看答案和解析>>

同步练习册答案