精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=lnx+$\frac{a}{x}$
(Ⅰ)讨论函数f(x)的单调性
(Ⅱ)当x∈(1,+∞)时,f(x)$<\frac{x}{2}$恒成立,求实数a的取值范围.

分析 (Ⅰ)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;
(Ⅱ)问题转化为a<$\frac{{x}^{2}}{2}$-xlnx在(1,+∞)恒成立,令g(x)=$\frac{{x}^{2}}{2}$-xlnx,(x>1),根据函数的单调性求出a的范围即可.

解答 解:(Ⅰ)∵定义域为(0,+∞)
∴f′(x)=-$\frac{a}{{x}^{2}}$+$\frac{1}{x}$=$\frac{x-a}{{x}^{2}}$,
①当a≤0,f′(x)≥0,恒成立,
∴f(x)在定义域(0,+∞)单调递增;
②当a>0,当x>a时,f′(x)>0,f(x)单调递增;
当0<x<a,f′(x)<0,f(x)单调递减.
∴函数f(x)的单调递增区间:(a,+∞),单调递减区间:(0,a);
(Ⅱ)x∈(1,+∞)时,f(x)$<\frac{x}{2}$恒成立,
即a<$\frac{{x}^{2}}{2}$-xlnx在(1,+∞)恒成立,
令g(x)=$\frac{{x}^{2}}{2}$-xlnx,(x>1),
则g′(x)=x-lnx-1,g″(x)=1-$\frac{1}{x}$>0,
故g′(x)递增,g′(x)>g(1)=0,
故g(x)在(1,+∞)递增,
故g(x)>g(1)=$\frac{1}{2}$,
故a≤$\frac{1}{2}$.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,考查转化思想、分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.过点(-10,10)且在x轴上截距是在y轴上截距的4倍的直线的方程为(  )
A.x-y=0B.x+4y-30=0
C.x+y=0 或x+4y-30=0D.x+y=0或x-4y-30=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆x2+$\frac{y^2}{4}$=1的左右两个顶点分别为A,B,曲线C是以A,B两点为顶点,焦距为2$\sqrt{5}$的双曲线,设点P在第一象限且在曲线C上,直线AP与椭圆相交于另一点T
(1)求曲线C的方程
(2)设P,T两点的横坐标分别为x1,x2,求证x1.x2为一定值
(3)设△TAB与△POB(其中O为坐标原点)的面积分别为S1,S2,且$\overrightarrow{PA}$•$\overrightarrow{PB}$≤15,求S12-S22的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若关于x的方程|f(|x|)|=a,当a>0时总有4个解,则f(x)可以是(  )
A.x2-1B.$\frac{1}{x-1}$C.2x-2D.log2x-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知一个正四棱柱的侧面展开图的周长为18,则这个正四棱柱的体积的最大值为27.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系xOy中,直线l过点P(-1,-2),且方向向量为(1,$\sqrt{3}$).在以点O为极点,x轴的正半轴为极轴的极坐标系中,圆C的极坐标方程为ρ=2cos(θ-$\frac{π}{3}$).
(1)求直线l的参数方程;
(2)若直线l与圆C相交于M、N两点,求$\frac{1}{|PM|}$+$\frac{1}{|PN|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.现有红、黄、蓝三种颜色供选择,在如图所示的五个空格里涂上颜色,要求相邻空格不同色,则不同涂色方法的种数是(  )
A.24B.36C.48D.108

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={x|x2-x≤0},B={x|2x-1>0},则A∩B=(  )
A.[0,$\frac{1}{2}$)B.[0,1]C.($\frac{1}{2}$,1]D.($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.观察下面关于循环小数化分数的等式:0.$\stackrel{•}{3}$=$\frac{3}{9}$=$\frac{1}{3}$,0.$\stackrel{•}{1}$$\stackrel{•}{8}$=$\frac{18}{99}$=$\frac{2}{11}$,0.$\stackrel{•}{3}$5$\stackrel{•}{2}$=$\frac{352}{999}$,0.000$\stackrel{•}{5}$$\stackrel{•}{9}$=$\frac{1}{1000}$×$\frac{59}{99}$=$\frac{59}{99000}$,据此推测循环小数0.2$\stackrel{•}{3}$可化分数为$\frac{7}{30}$.

查看答案和解析>>

同步练习册答案