精英家教网 > 高中数学 > 题目详情
在△ABC中,AB=2,AC=3,A=60°,则cosB=
 
考点:余弦定理,正弦定理
专题:解三角形
分析:由条件利用余弦定理求得BC的值,再利用余弦定理求得cosB的值.
解答: 解:△ABC中,AB=2,AC=3,A=60°,则由余弦定理可得 BC2=AB2+AC2-2AB•AC•cosA=7,∴BC=
7

再根据cosB=
BC2+AB2-AC2
2BC•AB
=
7+4-9
7
×2
=
7
14

故答案为:
7
14
点评:本题主要考查余弦定理的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线C的方程为:4x2+y2-8xcosθ-4ysin2θ-sin22θ=0.
(1)判断这是什么曲线?θ变化时它的形状、大小是否发生变化?
(2)当θ取一切实数时,求曲线C的中心的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos
3
2
x,sin
3
2
x),
b
=(cos
x
2
,-sin
x
2
),且x∈[0,
π
2
],求
(Ⅰ)
a
b
及|
a
+
b
|;
(Ⅱ)求函数f(x)=
a
b
-|
a
+
b
|的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

从5名男医生、4名女医生中选出3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图(示意),公路AM、AN围成的是一块顶角为α的角形耕地,其中tanα=-2.在该块土地中P处有一小型建筑,经测量,它到公路AM,AN的距离分别为3km,
5
km.现要过点P修建一条直线公路BC,将三条公路围成的区域ABC建成一个工业园.为尽量减少耕地占用,问如何确定B点的位置,使得该工业园区的面积最小?并求最小面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
x+y≥0
x-y+m≥0
x≤1
,若此不等式组表示的平面区域的面积为9,则实数m的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn,且a1=1,a2=3.
(1)求数列{an}的通项公式;
(2)记bn=
1
anan+1
,求数列{bn}的前n项和Tn,求使得Tn
m
20
对所有n∈N*都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m为等差数列1,5,9,…,中任一项,二项式(2x+
3
x
m展开式中存在常数项,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

两等差数列{an}和{bn},前n项和分别为Sn,Tn,且
Sn
Tn
=
7n+2
n+3
,则
a2+a20
b7+b15
等于
 

查看答案和解析>>

同步练习册答案