精英家教网 > 高中数学 > 题目详情
设函数f(x)=x-1-
lnx
x

(Ⅰ)令N(x)=x2-1+lnx,判断N(x)在(0,+∞)上的单调性并求所有的零点;
(Ⅱ)求f(x)在定义域上的最小值;
(Ⅲ)求证:对任意n∈N*,n≥2,都有:
1
ln2
+
1
ln3
+
1
ln4
+…
1
lnn
>1-
1
n
考点:利用导数求闭区间上函数的最值,函数零点的判定定理,利用导数研究函数的单调性
专题:计算题,导数的概念及应用
分析:(Ⅰ)求导判定N(x)单调性,再求零点;
(Ⅱ)求导找到最小值;
(Ⅲ)由f(x)≥0推
1
lnk
1
k2-k
=
1
k(k-1)
=
1
k-1
-
1
k
,得解.
解答: 解:(Ⅰ)∵N′(x)=2x+
1
x
>0,
∴N(x)在(0,+∞)上单调递增;
那么N(x)在(0,+∞)上至多有一个零点,
由N(1)=1-1+0=0,则N(x)在(0,+∞)上唯一零点为x=1.
(Ⅱ)f(x)的定义域为(0,+∞);
f′(x)=1-
1-lnx
x2
=
N(x)
x2

则①当0<x<1时,N(x)<0,则f′(x)<0,
②当x>1时,N(x)>0,则f′(x)>0,
则f(x)在(0,1)上单调递减,在(1,+∞)上单调递增;
则f(x)min=f(1)=0.
(Ⅲ)由f(x)=x-1-
lnx
x
≥0可得,
x2-x≥lnx(x>0)
令x=k≥2,
则k2-k>0,lnk>0,k2-k>lnk;
1
lnk
1
k2-k
=
1
k(k-1)
=
1
k-1
-
1
k

1
ln2
+
1
ln3
+
1
ln4
+…
1
lnn
1
1
-
1
2
+
1
2
-
1
3
+…+
1
n-1
-
1
n
=1-
1
n
点评:本题综合性很强,考查了导数的综合应用,零点个数的判定,不等式的证明及裂项求和的方法,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=sinx(sinx+cosx).
(Ⅰ)求f(x)的最大值及相应x的值;
(Ⅱ)在锐角△ABC中,满足f(A)=1.求sin(2B+C)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知半径为1的定圆⊙P的圆心P到定直线l的距离为2,Q是l上一动点,⊙Q与⊙P相外切,⊙Q交l于M、N两点,对于任意直径MN,平面上恒有一定点A,使得∠MAN为定值.求∠MAN的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四边形ABCD中,AB∥CD,∠ABD=30°,AB=2CD=2AD=2DE=2,DE⊥平面ABCD,EF∥BD,且BD=2EF.
(Ⅰ)求证:平面ADE⊥平面BDEF;
(Ⅱ)若二面角C-BF-D的大小为60°,求CF与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,圆C是以点C(2,-
π
6
)为圆心、2为半径的圆.
(1)求圆C的极坐标方程;
(2)求圆C被直线l:θ=-
12
所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD为矩形,且PA=AD=1,AB=2,∠PAB=120°,∠PBC=90°.
(1)求证:平面PAD与平面PAB垂直;
(2)求直线PC与直线AB所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,地面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,点E是PC的中点.
(Ⅰ)求证:PA∥平面EDB;
(Ⅱ)求证:DE⊥平面PBC;
(Ⅲ)求二面角E-BD-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高一学生参加社会实践活动,调查某种产品的生产和销售情况时发现:该产品的出厂价格在6元基础上按月份随正弦曲线波动,已知在一个周期内3月份出厂价最高为8元,7月份出厂价最低为4元,而该商品在商店内的销售价格是在8元基础山按月份随正弦曲线波动的,并已知在一个周期内5月份出厂价最高为10元,9月份销售价最低为6元.学校超市每月进这种商品m件,并且当月售完.请你根据以上调查情况估计超市哪个月份盈利最大?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

近年来,网上购物已经成为人们消费的一种趋势.为了获得更多的利润,某网店在国庆节前后搞了一次长达50天的促销活动.在这50天内,网店的销售额(单位:万元)与促销时间(单位:天)的关系满足f(t)=-
1
10
t(t-60),0≤t≤50;网店的投资额g(t)与促销时间t的关系如下图所示.(利润=销售额-投资额)
(Ⅰ)促销活动的第30天,网店获得的利润为多少万元?
(Ⅱ)请你写出网店的投资额g(t)与促销时间t之间的关系式;
(Ⅲ)在促销活动的前30天内,哪一天的销售利润最大?最大利润是多少万元?

查看答案和解析>>

同步练习册答案