精英家教网 > 高中数学 > 题目详情
若向量
a
b
c
满足
a
b
,且
b
c
=0则(2
a
+
b
c
=
 
考点:平面向量数量积的运算
专题:平面向量及应用
分析:
b
c
=0,且
a
b
,可得
a
b
线性表示,代入(2
a
+
b
)•
c
计算即可.
解答: 解:∵
b
c
=0,∴
b
0

又∵
a
b
,∴
a
b
,(λ∈R);
∴(2
a
+
b
)•
c
=(2λ
b
+
b
)•
c

=(2λ+1)
b
c

=(2λ+1)×0
=0;
故答案为:0.
点评:本题考查了平面向量的数量积的运算问题,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知奇函数f(x)=ax-(k+1)a-x(a>0且a≠1)的定义域为R.
(1)求实数k的值;
(2)若f(1)=1,令g(x)=a2x+a-2x-2mf(x),求实数m的取值范围,使得g(x)>0在[1,+∞)恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(0,1),B(0,-1),C(1,0),动点P满足
AP
BP
=2|
PC
|2
,则|
AP
+
BP
|
的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-e-x(x∈R),不等式et•f(2t)-mf(t)<0对于t∈(0,1)恒成立,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知log
1
2
(x+y+4)<log
1
2
(3x+y-2),若x-y<λ恒成立,则λ的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点为F1、F2,以F1F2为直径的圆与椭圆交于点P,若△F1PF2的面积为16,则该椭圆的短轴长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3+x(x∈R)当0≤θ<
π
2
时f(msinθ)+f(1-m)≥0恒成立,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公比为q的等比数列{an}的前n项和为Sn,n∈N*,则下列结论中:
(1)Sn,S2n-Sn,S3n-S2n成等比数列;
(2)(S2n-Sn)2=Sn(S3n-S2n)
(3)S3n-S2n=qn(S2n-Sn)
正确的结论为(  )
A、(1)(2)
B、(1)(3)
C、(2)(3)
D、(1)(2)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C的对边分别为a、b、c,求证:acos2
C
2
+ccos2
A
2
=
1
2
(a+b+c)

查看答案和解析>>

同步练习册答案