精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,定义d(P,Q)=|x1-x2|+|y1-y2|为P(x1,y1),Q(x2,y2)两点之间的“折线距离”,则椭圆
x2
2
+y2=1
上一点P与直线3x+4y-12=0上一点Q的“折线距离”的最小值为
 
考点:椭圆的简单性质
专题:综合题,新定义,圆锥曲线的定义、性质与方程
分析:根据新定义,利用参数法,表示出椭圆
x2
2
+y2=1
上一点P与直线3x+4y-12=0上一点Q的“折线距离”,然后分类讨论求出最小值.
解答: 解:设直线3x+4y-12=0上的任意一点坐标(x,3-
3
4
x),椭圆
x2
2
+y2=1
上任意一点的坐标为(
2
cosθ,sinθ)
由题意可知:d=|x-
2
cosθ|+|3-
3
4
x-sinθ|
分类讨论:
①x≥4-
4
3
sinθ,d=x-
2
cosθ-3+
3
4
x+sinθ=
7
4
x-3-
2
cosθ+sinθ≥4-
2
cosθ-
4
3
sinθ
=4-
34
3
sin(θ+α)≥
12-
34
3

②4-
4
3
sinθ>x>
2
cosθ解同上
③x≤
2
cosθ,d=-(x-
2
cosθ-3+
3
4
x+sinθ)=-(
7
4
x-3-
2
cosθ+sinθ)≥-
3
2
4
cosθ-sinθ+3
=3+
34
4
sin(θ+β)≥
12-
34
4

∴椭圆
x2
2
+y2=1
上一点P与直线3x+4y-12=0上一点Q的“折线距离”的最小值为
12-
34
4

故答案为:
12-
34
4
点评:本题是中档题,考查新定义,利用新定义求出函数的最小值问题,考查计算能力,对新定义的理解和灵活运应是解好本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

航空母舰“辽宁舰”在某次舰载机起降飞行训练中,有5架歼-15飞机准备着舰.如果甲、乙两机必须相邻着舰,而甲、丁两机不能相邻着舰,那么不同的着舰方法有(  )
A、12种B、16种
C、24种D、36种

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(α-
3
)=
1
4
,则sin(α+
π
3
)
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某厂对一批产品进行抽样检测,图2是抽检产品净重(单位:克)数据的频率分布直方图,样本数据分组为[76,78)、[78,80)、…、[84,86].若这批产品有120个,估计其中净重大于或等于78克且小于84克的产品的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=f(x)的图象在点P(3,f(3))处的切线方程为y=x+2,f′(x)为f(x)的导函数,则f(3)+f′(3)
 

查看答案和解析>>

科目:高中数学 来源: 题型:

圆x2+y2=4上的点到直线4x-3y+25=0的距离的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设m,n为不重合的两条直线,α,β为不重合的两个平面,给出下列命题:
①若m∥α,m∥β,则α∥β;    
②若l∥α,m∥β,α∥β,则l∥m;
③若m⊥α,n⊥α,则m∥n;      
④若m⊥n,m⊥α,则n⊥α.
则其中所有真命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

e1
e2
是夹角为60°的单位向量,则
a
=2
e1
+
e2
b
=3
e1
+2
e2
的夹角为(  )
A、
π
6
B、
π
3
C、
3
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A,B是海平面上的两个小岛,为测量A,B两岛间的距离,测量船以15海里/小时的速度沿既定直线CD航行,在t1时刻航行到C处,测得∠ACB=75°,∠ACD=120°,1小时后,测量船到达D处,测得∠ADC=30°,∠ADB=45°,求A,B两小岛间的距离.(注:A、B、C、D四点共面)

查看答案和解析>>

同步练习册答案