精英家教网 > 高中数学 > 题目详情
6.如图,四棱锥S-ABCD的底面是正方形,边长为$\sqrt{2}$,每条侧棱的长都是底面边长的$\sqrt{2}$倍,P为侧棱SD上的点.
(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求CP与平面SBC所成角的正弦值.

分析 (1)连结BD,交AC于点O,以O为原点建立坐标系,通过计算$\overrightarrow{AC}•\overrightarrow{SD}=0$得出AC⊥SD;
(2)求出$\overrightarrow{CP}$与平面SBC的法向量$\overrightarrow{m}$,计算cos<$\overrightarrow{m},\overrightarrow{CP}$>即可得出CP与平面SBC所成角的正弦值.

解答 (1)证明:连结BD,交AC于点O,由题意知SO⊥平面ABCD,
以O点为坐标原点,以OB,OC,OS分别为x轴、y轴、z轴,建立空间直角坐标系.
∵底面ABCD是边长为$\sqrt{2}$的正方形,侧棱长为2,
∴OB=OC=1,$OS=\sqrt{3}$,
于是$A(0,-1,0),C(0,1,0),S(0,0\sqrt{3}),D(-1,0,0)$
∴$\overrightarrow{AC}=(0,2,0),\overrightarrow{SD}=(-1,0,-\sqrt{3})$,
∴$\overrightarrow{AC}•\overrightarrow{SD}=0×(-1)+2×0+0×(-\sqrt{3})=0$,
∴AC⊥SD.
(2)解:∵SD⊥平面PAC,PC?平面PAC,
∴SD⊥CP,
设$\overrightarrow{SP}=λ\overrightarrow{SD}=(-λ,0,-\sqrt{3}λ)$,又$S(0,0\sqrt{3})$,∴$P(-λ,0,\sqrt{3}-\sqrt{3}λ)$,
∴$\overrightarrow{CP}=(-λ,-1,\sqrt{3}-\sqrt{3}λ)$,又$\overrightarrow{SD}=(-1,0,-\sqrt{3})$,
∴$\overrightarrow{SD}•\overrightarrow{CP}=-λ×(-1)+(-1)×0+(\sqrt{3}-\sqrt{3}λ)×(-\sqrt{3})=0$,解得$λ=\frac{3}{4}$,
∴$\overrightarrow{CP}=(-\frac{3}{4},-1,\frac{{\sqrt{3}}}{4})$,
∵B(1,0,0),∴$\overrightarrow{BS}=(-1,0,\sqrt{3})$,$\overrightarrow{BC}=(-1,1,0)$,
设平面SBC的法向量为$\overrightarrow{m}$=(x,y,z),
则$\left\{\begin{array}{l}\overrightarrow m•\overrightarrow{BS}=-x+\sqrt{3}z=0\\ \overrightarrow m•\overrightarrow{BC}=-x+y=0\end{array}\right.$,令z=1得$\overrightarrow m=(\sqrt{3},\sqrt{3},1)$,
∴$cos<\overrightarrow m,\overrightarrow{CP}>=\frac{{\overrightarrow m•\overrightarrow{CP}}}{{|\overrightarrow m||\overrightarrow{CP}|}}=\frac{{-\frac{{3\sqrt{3}}}{4}-\sqrt{3}+\frac{{\sqrt{3}}}{4}}}{{\sqrt{7}•\sqrt{\frac{28}{16}}}}=-\frac{{3\sqrt{3}}}{7}$,
于是CP与平面SBC所成角的正弦值为|cos<$\overrightarrow{m},\overrightarrow{CP}$>|=$\frac{{3\sqrt{3}}}{7}$.

点评 本题考查了线面垂直的判定与性质,空间向量与线面角的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.某商品在销售过程中投入的销售时间x与销售额y的统计数据如下表:
销售时间x(月)12345
销售额y(万元)0.40.50.60.60.4
用线性回归分析的方法预测该商品6月份的销售额.
(参考公式:$\widehat{b}$=$\frac{{\sum_{i=1}^n{\;}({x_i}-_x^-)({y_i}-_y^-)}}{{\sum_{i=1}^n{\;}{{({x_i}-_x^-)}^2}}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$表示样本平均值)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.连接直角三角形的直角顶点与斜边的两个三等分点,所得线段的长分别为sinα和cosα$(0<α<\frac{π}{2})$,则斜边长是$\frac{{3\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知直线l过点P(1,2),且与x轴、y轴的正半轴分别交于A,B两点,则当△AOB的面积取得最小值时,直线l的方程为(  )
A.2x+y-4=0B.x-2y+3=0C.x+y-3=0D.x-y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若f(x)=(x+1)4,则f′(0)等于(  )
A.0B.1C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知相关变量x和$\stackrel{∧}{y}$满足关系$\stackrel{∧}{y}$=-x+1相关变量y与$\stackrel{∧}{z}$满足$\stackrel{∧}{z}$=3y+4,下列结论中正确的(  )
A.x和$\stackrel{∧}{y}$负相关,y与$\stackrel{∧}{z}$负相关B.x和$\stackrel{∧}{y}$正相关,y与$\stackrel{∧}{z}$正相关
C.x和$\stackrel{∧}{y}$正相关,y与$\stackrel{∧}{z}$负相关D.x和$\stackrel{∧}{y}$负相关,y与$\stackrel{∧}{z}$正相关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知A、B、C的坐标分别为A(4,0),B(0,4),C(3cosα,3sinα)
(1)若α∈(-π,0)且$\overrightarrow{|{AC}|}=\overrightarrow{|{BC}|}$,求角α的值;
(2)若$\overrightarrow{AC}•\overrightarrow{BC}=0$,求$\frac{{2{{sin}^2}α+2sinαcosα}}{1+tanα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.等差数列{an}中,已知a4=-4,a8=4,则a12=12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数$f(x)=tanx+\frac{1}{tanx}$,若f(α)=5,则f(-α)=-5.

查看答案和解析>>

同步练习册答案