精英家教网 > 高中数学 > 题目详情
若关于x的方程mx2-(1-m)x+m=0没有实数根,则实数m的取值范围是(  )
A、(-∞,-1)
B、(
1
3
,+∞)
C、(-1,
1
3
D、(-∞,-1)∪(
1
3
,+∞)
考点:二次函数的性质
专题:
分析:m=0时有解,m≠0时,方程为一元二次方程,由△<0解出即可.
解答: 解:m=0时,有解,不合题意,
m≠0时,
由题意得:△=[-(1-m)]2-4m2<0,
解得:x<-1,x>
1
3

故选:D.
点评:本题考查了二次函数的性质,判别式的应用,解不等式,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示为超重机装置示意图,支杆BC=10m,吊杆AC=15cm,吊索AB=5
19
cm,那么起吊的货物与岸的距离AD为(  )
A、30m
B、
15
2
3
m
C、15
3
m
D、45m

查看答案和解析>>

科目:高中数学 来源: 题型:

复数
(1+i)2
1-i
的虚部为(  )
A、-iB、iC、-1D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为R,若存在常数M>0,使|f(x)|≤M|x|对一切实数x均成立,则称f(x)为“倍约束函数”.现给出下列函数:①f(x)=2x;②f(x)=x2+1;③f(x)=cosx;④f(x)=
x
x2-x+3
.其中是“倍约束函数”的有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

若|cosx|=cos(π-x),则角x的取值范围是(  )
A、2kπ-
π
2
≤x≤2kπ+
π
2
(k∈Z)
B、2kπ+
π
2
<x<2kπ+
2
(k∈Z)
C、2kπ+
π
2
≤x≤2kπ+
2
(k∈Z)
D、2kπ+π≤x≤2kπ+2π(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0,b>0,若
3
是3a与3b的等比中项,则
1
a
+
1
b
的最小值(  )
A、2
B、
1
4
C、4
D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中,a5+a6=a12,a1+a7=10,则a2+a4+a6+…+a100的值等于(  )
A、1300B、1350
C、2650D、2600

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ex
1+ax2
,其中a为实数,常数e=2.718….
(1)若x=
1
3
是函数f(x)的一个极值点,求a的值;
(2)当a取正实数时,求函数f(x)的单调区间;
(3)当a=-4时,直接写出函数f(x)的所有减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1(-1,0)、F2(1,0),过F1作与x轴不重合的直线l交椭圆于A、B两点.
(Ⅰ)若△ABF2为正三角形,求椭圆的标准方程;
(Ⅱ)若椭圆的离心率满足0<e<
5
-1
2
,O为坐标原点,求证OA2+OB2<AB2

查看答案和解析>>

同步练习册答案