精英家教网 > 高中数学 > 题目详情
15.对于大于或等于2的自然数的3次方可以做如下分解:23=3+5,33=7+9+11,43=13+15+17+19,…根据上述的分拆规律,若a3(a∈R)的分解式中最小的数是1641,则a的值为41.

分析 根据23=3+5,33=7+9+11,43=13+15+17+19,可知从23起,m3的分解规律恰为数列3,5,7,9,若干连续项之和,23为前两项和,33为接下来三项和,故m3的首数为m2-m+1,利用条件可解.

解答 解:根据23=3+5,33=7+9+11,43=13+15+17+19,
从23起,m3的分解规律恰为数列3,5,7,9,若干连续项之和,23为前两项和,33为接下来三项和,
故m3的首数为m2-m+1
∵m3(m∈N*)的分解中最小的数是1641,
∴m2-m+1=1641,
∴m=41.
故答案为:41.

点评 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.化简求值:$\sqrt{si{n}^{2}α(1+cotα)+co{s}^{2}α(1+tanα)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知下列不等式,比较正数m,n的大小.
(1)logπm>logπn;
(2)log0.3m>log0.3n.
(3)logam<logan(0<a<1);
(4)logam>logan(a>1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知a、b、c都是正数,求证:$\frac{a}{b}$+$\frac{b}{c}$+$\frac{c}{a}$≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=xsinx+(ax+b)cosx,试确定常数a,b使得f′(x)=xcosx-sinx成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若对?x,y∈[0,+∞),不等式4ax≤ex+y-2+ex-y-2+2恒成立,则实数a的最大值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若P、Q分别为直线3x+4y-5=0与6x+8y+5=0上的动点,则|PQ|的最小值为(  )
A.3B.$\frac{3}{2}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.对于实数x,y,若2x+3y=5,则x2+y2的最小值为$\frac{25}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设等差数列{an}的前n项和为Sn,已知a3=12,S12>0,S13<0.
(1)求数列{an}的公差d的取值范围;
(2)求数列{an}的前n项和为Sn取得最大值时n的值.

查看答案和解析>>

同步练习册答案