精英家教网 > 高中数学 > 题目详情
若双曲线
x2
a2
-
y2
b2
=1(a>b>0)左支上一点P到右焦点的距离为8,则P到左准线的距离为
 
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:利用双曲线的定义,可得P到左焦点的距离为8-2a,利用双曲线的第二定义,即可得出结论.
解答: 解:∵双曲线
x2
a2
-
y2
b2
=1(a>b>0)左支上一点P到右焦点的距离为8,
∴P到左焦点的距离为8-2a,
设P到左准线的距离为d,则
8-2a
d
=
c
a

∴d=
a(8-2a)
a2+b2

故答案为:
a(8-2a)
a2+b2
点评:本题考查双曲线的定义,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为[0,1],且同时满足以下三个条件:①f(1)=1;②对任意的x∈[0,1],都有f(x)≥0; ③当x≥0,y≥0,x+y≤1时总有f(x+y)≥f(x)+f(y).
(1)试求f(0)的值;
(2)求f(x)的最大值;
(3)证明:当x∈[
1
4
,1]
时,恒有2x≥f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知n∈N*,则
lim
n→∞
3n+1-2n+1
3n+2n
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的渐近线过点P(2,1),则其离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y2=8x上两点M、N到焦点F的距离分别是d1,d2,若d1+d2=5,则线段MN的中点P到y轴的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果对定义在R上的函数f(x),对任意两个不相等的实数x1,x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数f(x)为“H函数”.给出下列函数①y=-x3+x+1;②y=3x-2(sinx-cosx);③y=ex+1;④f(x)=
ln|x|
 
 
 
,x≠0
0
 
 
 
 
 
 
,x=0
.以上函数是“H函数”的所有序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中,正确的有
 

①若点P(x0,y0)是抛物线y2=2px上一点,则该点到抛物线的焦点F的距离是|PF|=x0+
P
2

②方程x2+y2-2x+1=0表示的图形是圆;
③设定圆O上有一动点A,圆O内一定点M,AM的垂直平分线与半径OA的交点为点P,则P的轨迹为一椭圆;
④某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=13;
⑤双曲线
y2
49
-
x2
25
=-1的渐近线方程是y=±
5
7
x.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=log2(|x-1|+|x-2|-3)的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a∈R,若对任意的n∈N*时,不等式(an-20)ln(
n
a
)≥0
恒成立,则a的取值范围是(  )
A、(-∞,5]
B、[4,5]
C、(4,5)
D、[1,5]

查看答案和解析>>

同步练习册答案