分析 (Ⅰ)利用相互独立事件的概率公式求出甲、乙两人同时得3分的概率;
(Ⅱ)根据甲、乙两人得分之和的可能取值,计算对应的概率,
写出ξ的分布列,计算数学期望值.
解答 解:(Ⅰ)设事件Ai为甲得分为i分(i=1,2,3),
事件Bi为乙得分为i分(i=1,2,3),
则$P({A_1})=\frac{1}{5}×\frac{2}{5}=\frac{2}{25}$,
$P({A_2})=\frac{4}{5}×\frac{2}{5}+\frac{1}{5}×\frac{3}{5}=\frac{11}{25}$,
$P({A_3})=\frac{4}{5}×\frac{3}{5}=\frac{12}{25}$,
$P({B_1})=\frac{1}{5}×\frac{1}{5}=\frac{1}{25}$,
$P({B_2})=\frac{1}{5}×\frac{4}{5}+\frac{4}{5}×\frac{1}{5}=\frac{8}{25}$,
$P({B_3})=\frac{4}{5}×\frac{4}{5}=\frac{16}{25}$;
又甲、乙两人同时得3分为事件A3•B3,
则$P({A_3}•{B_3})=\frac{12}{25}×\frac{16}{25}=\frac{192}{625}$; (5分)
(Ⅱ)甲、乙两人得分之和ξ的可能取值为2,3,4,5,6;
则$P(ξ=2)=P({A_1}•{B_1})=\frac{2}{25}×\frac{1}{25}=\frac{2}{625}$,
$P(ξ=3)=P({A_1}•{B_2})+P({A_2}•{B_1})=\frac{2}{25}×\frac{8}{25}+\frac{11}{25}×\frac{1}{25}=\frac{27}{625}$,
$P(ξ=4)=P({A_1}•{B_3})+P({A_2}•{B_2})+P({A_3}•{B_1})=\frac{2}{25}×\frac{16}{25}+\frac{11}{25}×\frac{8}{25}+\frac{12}{25}×\frac{1}{25}=\frac{132}{625}$,
$P(ξ=5)=P({A_2}•{B_3})+P({A_3}•{B_2})=\frac{11}{25}×\frac{16}{25}+\frac{12}{25}×\frac{8}{25}=\frac{272}{625}$,
$P(ξ=6)=P({A_3}•{B_3})=\frac{12}{25}×\frac{16}{25}=\frac{192}{625}$;(10分)
所以ξ的分布列为
| ξ | 2 | 3 | 4 | 5 | 6 |
| P | $\frac{2}{625}$ | $\frac{27}{625}$ | $\frac{132}{625}$ | $\frac{272}{625}$ | $\frac{192}{625}$ |
点评 本题考查了离散型随机变量的分布列与数学期望的计算问题,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | 6 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{1}{2}$ | C. | -2 | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 220 | B. | 350 | C. | 380 | D. | 410 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com