精英家教网 > 高中数学 > 题目详情
给出四个函数,分别满足:
①f(x+y)=f(x)+f(y); ②g(x+y)=g(x)g(y); ③h(x.y)=h(x)+h(y);
④t(x.y)=t(x)t(y).
又给出四个函数的图象:

则甲乙丙丁四个图象分别对应的函数是
 
  (填序号)
考点:函数的图象
专题:函数的性质及应用
分析:①f(x)=x,这个函数可使 f(x+y)=x+y=f(x)+f(y)成立,故①-丁;②指数函数y=ax(a>0,a≠1)使得g(x+y)=g(x)g(y),故②-甲;③令:h(x)=logax,则h(xy)=loga(xy)=logax+logbx.故③-乙.④t(x)=x2,这个函数可使t(xy)=t(x)t(y)成立.故④-丙.
解答: 解:①f(x)=x,这个函数可使 f(x+y)=x+y=f(x)+f(y)成立,
∵f(x+y)=x+y,x+y=f(x)+f(y),
∴f(x+y)=f(x)+f(y),自变量的和等于因变量的和.
正比例函数y=kx就有这个特点.故①-丁;
②寻找一类函数g(x),使得g(x+y)=g(x)g(y),即自变量相加等于因变量乘积.
指数函数y=ax(a>0,a≠1)
具有这种性质:g(x)=ax,g(y)=ay
g(x+y)=ax+y=ax•ay=g(x)•g(y).故②-甲;
③自变量的乘积等于因变量的和:与②相反,可知对数函数具有这种性质:
令:h(x)=logax,则h(xy)=loga(xy)=logax+logbx.故③-乙.
④t(x)=x2,这个函数可使t(xy)=t(x)t(y)成立.
∵t(x)=x2,∴t(xy)=(xy)2=x2y2=t(x)t(y),故④-丙.
故答案为:②③④①
点评:本题考查函数的图象的性质和应用,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
mx
2x+3
,且f(f(x))=x,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,函数f(x)=ax+x-4的零点为m,函数g(x)=logax+x-4的零点为n,则
1
m
+
1
n
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2,c=3,cosB=
1
4

(1)b=
 

(2)sinC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

用铁皮制造一个底面为正方形的无盖长方体水箱,要求水箱的体积为4,当水箱用料最省时水箱的高为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=2BC=2,∠A=
π
6
,则△ABC的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=
1
2
,则
sinα+cosα
sinα-cosα
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
16
+
y2
9
=1,A、B分别为椭圆C的长轴、短轴的端点,则椭圆C上到直线AB的距离等于
2
的点的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读如图所示的程序框图,若输入m=5,n=3,则输出a,i分别是(  )
A、a=15,i=3
B、a=15,i=5
C、a=10,i=3
D、a=8,i=4

查看答案和解析>>

同步练习册答案