精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=lnx+bx-c,f(x)在点(1,f(1))处的切线方程为x+y+4=0.
(1)求f(x)的解析式;
(2)求f(x)的单调区间;
(3)若在区间$[{\frac{1}{2},3}]$内,恒有f(x)≥2lnx+kx成立,求k的取值范围.

分析 (1)由求导公式、法则求出f′(x),根据题意和导数的几何意义求出b的值,将(1,f(1))代入方程x+y+4=0求出f(1),代入解析式列出方程求出c,即可求出函数f(x)的解析式;
(2)由(1)求出函数的定义域和f′(x),求出f′(x)>0和f′(x)<0的解集,即可求出函数f(x)的单调区间;
(3)由f(x)≥2lnx+kx,k≤-2-$\frac{lnx+3}{x}$在区间$[{\frac{1}{2},3}]$内恒成立,求出右边的最小值,即可得出结论.

解答 解:(1)由题意,f′(x)=$\frac{1}{x}$+b,则f′(1)=1+b,
∵在点(1,f(1))处的切线方程为x+y+4=0,
∴切线斜率为-1,则1+b=-1,得b=2-,
将(1,f(1))代入方程x+y+4=0,
得:1+f(1)+4=0,解得f(1)=-5,
∴f(1)=b-c=-5,将b=2代入得c=3,
故f(x)=lnx-2x-3;
(2)依题意知函数的定义域是(0,+∞),且f′(x)=$\frac{1}{x}$-2,
令f′(x)>0得,0<x<$\frac{1}{2}$,令f′(x)<0得,x>$\frac{1}{2}$,
故f(x)的单调增区间为(0,$\frac{1}{2}$),单调减区间为($\frac{1}{2}$,+∞).
(3)由f(x)≥2lnx+kx,k≤-2-$\frac{lnx+3}{x}$在区间$[{\frac{1}{2},3}]$内恒成立,
设g(x)=-2-$\frac{lnx+3}{x}$,则g′(x)=$\frac{lnx+2}{{x}^{2}}$,
∴g(x)在区间$[{\frac{1}{2},3}]$上单调递增,
∴g(x)的最小值为g($\frac{1}{2}$)=2ln2-8,
∴k≤2ln2-8.

点评 本题考查求导公式和法则,导数的几何意义,利用导数研究函数的单调性问题,考查恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.一个球的体积、表面积分别为V、S,若函数V=f(S),f'(S)是f(S)的导函数,则f'(π)=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.${∫}_{0}^{1}$(2x+$\sqrt{1-{x}^{2}}$)dx=1+$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知P为圆C:(x-2)2+(y-2)2=1上任一点,Q为直线l:x+y=1上任一点,则$|\overrightarrow{OP}+\overrightarrow{OQ}|$的最小值为$\frac{5\sqrt{2}-2}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设变量x,y满足约束条件$\left\{\begin{array}{l}x-y+2≥0\\ 2x-5y+10≤0\\ x+y-4≤0\end{array}\right.$则目标函数z=3x-4y的最大值和最小值分别为(  )
A.-6,-8B.-6,-9C.-8,-9D.6,-9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某手机卖场对市民进行国产手机认可度的调查,随机抽取100名市民,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如下:
分组(岁) 频数 
[25,30) x
[30,35) y
[35,40) 35
[40,45) 30
[45,50] 10
 合计 100
(Ⅰ)求频率分布表中x、y的值,并补全频率分布直方图;
(Ⅱ)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加国产手机用户体验问卷调查,现从这20人重随机抽取2人各赠送精美礼品一份,设这2名市民中年龄在[35,40)内的人数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.为了得到y=cos(2πx-$\frac{π}{3}$)的图象,只需将y=sin(2πx+$\frac{π}{3}$)的图象向右平移n(n>0)个单位,则n的最小值为$\frac{1}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若等比数列{an}的公比为2,且a3-a1=6,则$\frac{1}{{{a}_{1}}}$+$\frac{1}{{{a}_{2}}}$+…+$\frac{1}{{{a}_{n}}}$=1-$\frac{1}{{2}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xoy中圆C的参数方程为$\left\{\begin{array}{l}x=2+3cosα\\ t=3sinα\end{array}\right.$(α为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为$θ=\frac{π}{4}({ρ∈R})$.
(1)求圆C的直角坐标方程及其圆心C的直角坐标;
(2)设直线l与曲线C交于A,B两点,求△ABC的面积.

查看答案和解析>>

同步练习册答案