精英家教网 > 高中数学 > 题目详情
3.已知复数z同时满足下列两个条件:
①z的实部和虚部都是整数,且在复平面内对应的点位于第四象限.
②1<z+$\frac{2}{z}$≤4
(Ⅰ)求出复数z;
(Ⅱ)求|$\overline{z}$+$\frac{2-i}{2+i}$|

分析 (Ⅰ)利用已知条件,设出复数z,通过1<z+$\frac{2}{z}$≤4求出即可复数z;
(Ⅱ)化简$\overline{z}$+$\frac{2-i}{2+i}$为a+bi的形式,然后利用复数的模求解即可.

解答 解:由题意设复数z=a+bi,a>0,b<0,a,b∈Z.
(Ⅰ)1<z+$\frac{2}{z}$≤4,可得:$1<a+bi+\frac{2}{a+bi}≤4$,
可得1<a+$\frac{2a}{{a}^{2}+{b}^{2}}$+bi-$\frac{2b}{{a}^{2}+{b}^{2}}i$≤4,
可得b-$\frac{2b}{{a}^{2}+{b}^{2}}=0$,解得a2+b2=2  
1<a+$\frac{2a}{\sqrt{{a}^{2}+{b}^{2}}}$≤4,a>0,b<0,a,b∈Z.
可得a=1,b=-1,
z=1-i.
(Ⅱ)|$\overline{z}$+$\frac{2-i}{2+i}$|=$|1+i+\frac{2-i}{2+i}|$=$|1+i+\frac{(2-i)^{2}}{5}|$=$|\frac{8}{5}+\frac{i}{5}|$=$\sqrt{(\frac{8}{5})^{2}+(\frac{1}{5})^{2}}$=$\frac{\sqrt{65}}{5}$.

点评 本题考查复数的代数形式的混合运算魔法师的模的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.若关于x的不等式-$\frac{1}{2}$x2+2x≥mx的解集为{x|0≤x≤2},则m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,点F在△OCD所在的区域内(含边界)运动,$\overrightarrow{AB}$=$\frac{1}{2}$$\overrightarrow{AC}$=$\frac{1}{3}\overrightarrow{AD}$,且$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,当x=-$\frac{1}{3}$时,则y的取值范围是[$\frac{1}{2}$,$\frac{2}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知A,B,C三点的坐标分别为A(3,0),B(0,3),C(cosα,sinα).
(1)若|$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|,求tanα的值.
(2)若$\overrightarrow{AC}$•$\overrightarrow{BC}$=-1,求$\frac{2si{n}^{2}α+sin2α}{1+tanα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}{bn},对任何正整数n,都有a1b1+a2b2+a3b3+…+an-1•bn-1+an•bn=(n-1)•2n+1
(1)若数列{bn}是首项为1,公比为2的等比数列,求数列{an}通项公式;
(2)求证:$\frac{1}{{a}_{1}•{b}_{1}}$+$\frac{1}{{a}_{2}•{b}_{2}}$+$\frac{1}{{a}_{3}•{b}_{3}}$+…+$\frac{1}{{a}_{n}•{b}_{n}}$<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2+2(1-2a)x+6在(-∞,-1)上是减函数.
(1)求f(2)的取值范围;
(2)比较f(2a-1)与f(0)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=cos4x-2sinxcosx-sin4x.
(Ⅰ)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的值域;
(Ⅱ)若函数g(x)=f(x+$\frac{π}{6}$),求使g(θ)≤-1成立的θ的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某高校小语种招生考试中,陕师大附中获得5个推荐名额,其中俄语2个,西班牙语2个,阿拉伯语1个,通过选拔定下3男2女共5名推荐对象,则俄语、西班牙语都有男生参加的概率(  )
A.$\frac{2}{3}$B.$\frac{4}{5}$C.$\frac{3}{10}$D.$\frac{11}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.椭圆$\frac{x^2}{4}$+$\frac{y^2}{3}$=1的焦距为2.

查看答案和解析>>

同步练习册答案