精英家教网 > 高中数学 > 题目详情
20.某单位1~4月份用水量(单位:百吨)的一组数据如表所示:
月份x1234
用水量y4.5432.5
根据收集到的数据,由最小二乘法可求得线性回归方程$\widehat{y}$=$\widehat{b}$x+5.25,则$\widehat{b}$=(  )
A.-0.7B.0.7C.-0.75D.0.75

分析 利用回归直线经过样本中心求解即可.

解答 解:由题意可得:$′\overline{x}$=$\frac{1+2+3+4}{4}$=2.5,$\overline{y}$=$\frac{4.5+4+3+2.5}{4}$=3.5.
因为回归直线经过样本中心,可得:3.5=2.5$\widehat{b}$+5.25,
解得$\widehat{b}$=-0.7.
故选:A.

点评 本题考查回归直线的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知点A(1,a),圆x2+y2=4.
(1)若过点A的圆的切线只有一条,求a的值及切线方程;
(2)若过点A且在两坐标轴上截距相等的直线被圆截得的弦长为2$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在区间[0,5]上随机地取一个数x,则“x≤1”的概率为$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.为了调查某生产线上质量监督员甲对产品质量好坏有无影响,现统计数据如下:质量监督员甲在生产现场时,990件产品中合格品有982件,次品有8件;甲不在生产现场时,510件产品中合格品有493件,次品有17件.试分别用列联表、独立性检验的方法分析监督员甲是否在生产现场对产品质量好坏有无影响?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图是函数y=Asin(ωx+φ)+2(A>0,ω>0,|φ|<π)的图象的一部分,则它的振幅、周期、初相分别是(  )
A.A=3,T=$\frac{4π}{3}$,φ=-$\frac{π}{6}$B.A=3,T=$\frac{4π}{3}$,φ=-$\frac{3π}{4}$
C.A=1,$T=\frac{4π}{3},φ=-\frac{π}{6}$D.A=1,$T=\frac{4π}{3},φ=-\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,AH⊥BC于H,点H满足$\overrightarrow{BH}$=2$\overrightarrow{HC}$,若|$\overrightarrow{BC}$|=3,则$\overrightarrow{BH}$•$\overrightarrow{BA}$=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数y=f(x)=$\frac{ax+1}{x+2}$在区间(-2,+∞)上单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴长为2,且离心率为$\frac{\sqrt{3}}{2}$,过原点的直线l交椭圆C于M,N两点.
(1)求椭圆C的标准方程;
(2)点P为线段MN的中垂线与椭圆C的一个公共点,求△PMN面积的最小值,并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某校高三年级5个班进行拔河比赛,每两个班都要比赛一场.到现在为止,1班已经比了4场,2班已经比了3场,3班已经比了2场,4班已经比了1场,则5班已经比了2场.

查看答案和解析>>

同步练习册答案