精英家教网 > 高中数学 > 题目详情
设数列{an}满足:a1=1,an=a1+
1
2
a2+
1
3
a3+…+
1
n-1
an-1
(n≥2,n∈N),若an=2009,则n=
 
考点:数列递推式
专题:计算题,等差数列与等比数列
分析:由题意,an+1-an=
an
n
,可得
an+1
an
=
n+1
n
,利用叠乘法,即可得出结论.
解答: 解:由题意,an+1-an=
an
n

an+1
an
=
n+1
n

∴an=
2
1
×
3
2
×…×
n
n-1
=n,
∵an=2009,∴n=2009
故答案为:2009.
点评:本题考查数列递推式,考查学生的计算能力,确定
an+1
an
=
n+1
n
,利用叠乘法是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图:AB是⊙O的直径,点P在AB的延长线上,且PB=OB=2,PC切⊙O于点C,CD⊥AB于点D,则CD=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2cos2(π+x)+2sin(
π
2
+x)cos(
2
+x)
sin(
π
2
+x)

(1)求f(x)的定义域;
(2)若sina=
4
5
且cosa=
3
5
,求f(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2+bx+c,且b>0,若对任意x有f(x)≥0,则
f(1)
b
的最小值为(  )
A、3
B、
5
2
C、2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1(-c,0),F2(c,0)是双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦点,若p为双曲线右支上一点,满足
PF1
PF2
=4ac,∠F1PF2=
π
3
,则该双曲线的离心率是(  )
A、2
2
-1
B、
2
+2
2
C、2
D、
2
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在有限数列{an}中,Sn是{an}的前n项和,我们把
S1+S2+S3+…+Sn
n
称为数列{an}的“均和”.现有一个共2010项的数列{an}:a1,a2,a3,…,a2009,a2010若其“均和”为2011,则有2011项的数列1,a1,a2,a3,…,a2009,a2010的“均和”为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:F(x,y)=yx(x>0,y>0),已知数列{an}满足an=
F(n,2)
F(2,n)
(n∈N*),若对任意正整数n,都有an≥ak(k∈N*)成立,则ak的值为(  )
A、
8
9
B、1
C、
32
25
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

设角α∈(0,
π
2
),f(x)的定义域为[0,1],f(0)=0,f(1)=1,当x≥y时,有f(
x+y
2
)=f(x)sinα+(1-sinα)f(y)
(1)求f(
1
2
)、f(
1
4
)的值;
(2)求α的值;(3)设g(x)=4sin(2x+α)-1,且lgg(x)>0,求g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果(3x+2)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,那么a0-a1+a2-a3+a4的值等于(  )
A、33
B、-31
C、
55+1
2
D、
55-1
2

查看答案和解析>>

同步练习册答案