精英家教网 > 高中数学 > 题目详情
2.已知在△ABC中,点D在BC上,且满足$\overrightarrow{BD}$=3$\overrightarrow{DC}$,若$\overrightarrow{AD}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,则x+y=1.

分析 由题意,利用向量的三角形法则,将$\overrightarrow{AD}$用$\overrightarrow{AB}$,$\overrightarrow{AC}$表示,求出x,y.

解答 解:由题意,$\overrightarrow{AD}=\overrightarrow{AB}+\frac{3}{4}\overrightarrow{BC}$=$\overrightarrow{AB}+\frac{3}{4}(\overrightarrow{AC}-\overrightarrow{AB})$=$\frac{1}{4}\overrightarrow{AB}+\frac{3}{4}\overrightarrow{AC}$,
所以x=$\frac{1}{4}$,y=$\frac{3}{4}$,
所以x+y=1;
故答案为:1.

点评 本题考查了向量的三角形法则的运用以及平面向量基本定理的运用;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.某校进行新课程改革已经四年,为了解教师对新课程改革教学模式的使用情况,进行问卷调查,共调查了50人,其中老教师20人,青年教师30人,老教师对新课改革赞同的有10人,不赞同的10人,青年教师中赞中的24人.
(1)根据以上数据建立一个2×2列联表;
(2)判断是否有99%的把握说明对新课程模式的赞同情况与年龄有关?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2-ax+a-1,a∈R.
(1)若f(x)在区间[0,2]上单调,求a的取值范围;
(2)若对于任意a∈(0,4),存在x0∈[0,2],使得t≤|f(x0)|成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知△ABC的周长等于20,面积是10$\sqrt{3}$,A=60°,则A的对边长为7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.不等式|x-1|+|x-3|≥m+1的解为一切实数,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知x=-1是函数f(x)=x3-3x2-mx+10(m∈R)的一个极值点.
(2)求m的值;
(2)求函数f(x)在[-4,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列选项中,说法正确的是(  )
A.若命题“p∨q”为真命题,则命题p和命题q均为真命题
B.am2<bm2是a<b的必要不充分条件
C.x=2kπ+$\frac{π}{4}$(k∈Z)是(-sinx)′=(cosx)′的充要条件
D.命题“若{$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{b}$+$\overrightarrow{c}$,$\overrightarrow{c}$+$\overrightarrow{a}$}构成空间的一个基底,则{$\overrightarrow{a}$,$\overrightarrow{b}$$\overrightarrow{c}$}构成空间的一个基底”的否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合M是由具有如下性质的函数f(x)组成的集合:对于函数f(x),在定义域内存在两个变量x1,x2且x1<x2时有f(x1)-f(x2)>x1-x2.则下列函数:①f(x)=ex(x>0)②f(x)=$\frac{lnx}{x}$③f(x)=$\sqrt{x}$④f(x)=1+sinx在集合M中的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,己知点 A(-3,4),B(9,0),C,D分别为线段OA,OB上的动点,且满足AC=BD.
(1)若AC=4,求直线CD的方程;
(2)证明:△OCD的外接圆恒过定点(异于原点O).
(3)当△OCD的外接圆面积为$\frac{25π}{8}$时,求△OCD的外接圆方程.

查看答案和解析>>

同步练习册答案