精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-2ln|x|与g(x)=sin(x+ψ)(ω>0)有两个公共点,则在下列函数中满足条件的周期最大的g(x)等于(  )
A、sin(2πx-
π
2
B、sin(
πx
2
-
π
2
C、sin(πx-
π
2
D、sin(πx+
π
2
考点:正弦函数的图象
专题:三角函数的图像与性质
分析:利用导数研究函数f(x)的最大值和最小值,利用f(x)|与g(x)有两个公共点,建立条件关系即可得到结论.
解答: 解:f(x)定义域为x≠0
①当x>0时:f(x)=x2-2ln|x|=x2-2lnx,f'(x)=2x-
2
x

令f'(x)=0,解得x=1,
由f'(x)<0,则0<x<1,
由f'(x)>0,则x>1,
则当x=1时,f(x)取的最小值,最小值为f(1)=1.
②当x<0时:f(x)=x2-2ln|x|=x2+2lnx,
则f'(x)=2x+
2
x

令f'(x)=0,解得x=-1,
由f'(x)<0,则x<-1,
由f'(x)>0,则-1<x<0,
则当x=-1时,函数f(x)取最小值,最小值为f(-1)=1.
综合①②所述:f(x)的最小值为f(-1)=f(1)=1
∵只有2个公共点,
∴g(x)最大值为1
则最长周期为|(-1)-1|=2,即T=
ω
=2
,即ω=π
则g(1)=sin(π+A)=1,
即π+A=2kπ+
π
2
,即A=2kπ-
π
2
,k∈Z
则周期最大的g(x)=sin(πx+2kπ-
π
2
)=sin(πx-
π
2
),k∈Z,
故选:C.
点评:本题主要考查函数图象的应用,根据导数研究函数的最值是解决本题的关键,综合性较强,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

a
b
c
均为单位向量,且
a
c
,则|
a
+
b
-
c
|的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

{a}表示实数a的正的小数部分,如{1.2}=0.2,{-0.3}=0.7,则方程{lg(x+2)}+{lgx}=1在区间(10,60)上的根是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合 A={x|-2≤x≤4},B={x|x<a},且A∩B≠∅,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在实数集R中定义一种运算“*”,对任意a,b∈R,a*b为唯一确定的实数,且具有性质:
(1)对任意a∈R,a*0=a;
(2)对任意a,b∈R,a*b=ab+(a*0)+(b*0).
则函数f(x)=(ex)*
1
ex
的最小值为(  )
A、2B、3C、6D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

下例等式中,对任意实数α,β均满足的是(  )
A、tan(α+β)=
tanα+tanβ
1-tanαtanβ
B、tan(α-β)=
tanα-tanβ
1+tanαtanβ
C、cos2α=2cos2α-1
D、sin2α-2sin2α=1

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l过点P(6,4)且与x轴正半轴交于点A,与y轴正半轴交于点B,O为坐标原点.若M为线段AB上一点,且直线OM的斜率为4,当△OAM的面积最小时,求M点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=4x+
a
x
+b(a,b∈R)
为奇函数.
(Ⅰ)若f(1)=5,求函数f(x)的解析式;
(Ⅱ)当a=-2时,不等式f(x)≤t在[1,4]上恒成立,求实数t的最小值;
(Ⅲ)当a≥1时,求证:函数g(x)=f(2x)-c(c∈R)在(-∞,-1]上至多有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角三角形ABC中,sinA=
3
5
,tan(A-B)=-
1
3
,求sinB,cosC的值.

查看答案和解析>>

同步练习册答案