精英家教网 > 高中数学 > 题目详情
1.若不等式$|{2x-1}|+|{x+2}|≤a+\frac{1}{a}$有解,则实数a的取值范围为(  )
A.[{$\frac{1}{2}$,2]B.[$\frac{3-\sqrt{5}}{2}$,$\frac{3+\sqrt{5}}{2}$,]C.(0,$\frac{1}{2}$]∪[2,+∞)D.$({0,\frac{{3-\sqrt{5}}}{2}}]∪[{\frac{{3+\sqrt{5}}}{2},+∞})$

分析 求出f(x)的最小值,根据不等式的性质求出a的范围即可.

解答 解:令f(x)=|2x-1|+|x+2|,
问题转化为f(x)min≤a+$\frac{1}{a}$,
而f(x)=$\left\{\begin{array}{l}{3x+1,x≥\frac{1}{2}}\\{-x+3,-2<x<\frac{1}{2}}\\{-3x-1,x≤-2}\end{array}\right.$,
故f(x)min=$\frac{5}{2}$,
即a+$\frac{1}{a}$≥$\frac{5}{2}$,即(2a-1)(a-2)≥0,
解得:a≥2或0<a≤$\frac{1}{2}$,
故选:C.

点评 本题考查了绝对值问题,考查函数的最值以及不等式的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,在五面体ABCDEF中,AB∥CD∥EF,CD=EF=CF=2AB=2AD=2,∠ACF=60°,AD⊥CD,平面CDEF⊥平面ABCD,P是BC的中点,
(1)求异面直线BE与PF所成角的余弦值;
(2)在直线EF上,是否存在一点Q,使得PQ∥平面EBD,若存在,求出该点;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>3,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.从1,2,3,4这4个数中,任取两个数,两个数都是奇数的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设集合A={x|-1<x<1},集合B={x|0<x<2},则A∩B等于(  )
A.{x|-1<x<0}B.{x|0<x<1}C.{x|1<x<2}D.{x|-1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若x∈(0,$\frac{π}{2}$),则(  )
A.x2cos2x>1B.$\frac{{x}^{4}}{si{n}^{2}x}$>$\frac{3}{4}$C.x2+cos2x>1D.x4-sin2x>$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,四边形ABCD为矩形,四边形ABEF为等腰梯形,平面ABCD⊥平面ABEF,AB∥EF,AB=2AF,∠BAF=60°,O,P分别为AB,CB的中点,M为底面△OBF的重心.
(1)求证:平面ADF⊥平面CBF;
(2)求证:PM∥平面AFC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)=x3-2xf′(1)+1,则f′(0)的值为(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)的定义域为[0,3],则函数f(3x+6)的定义域是[-2,-1].

查看答案和解析>>

同步练习册答案