精英家教网 > 高中数学 > 题目详情
四面体A-BCD中,AB=CD=4,BC=AC=AD=BD=5,则四面体外接球的表面积为
 
考点:球的体积和表面积
专题:
分析:分别取AB,CD的中点E,F,连接相应的线段,由条件可知,球心G在EF上,可以证明G为EF中点,求出球的半径,然后求出球的表面积.解答:点评:
解答: 解:分别取AB,CD的中点E,F,连接相应的线段CE,ED,EF,由条件,AB=CD=4,BC=AC=AD=BD=5,可知,△ABC与△ADB,都是等腰三角形,
AB⊥平面ECD,∴AB⊥EF,同理CD⊥EF,∴EF是AB与CD的公垂线,球心G在EF上,可以证明G为EF中点,(△AGB≌△CGD)
DE=
25-4
=
21
,DF=2,EF=
21-4
=
17

∴GF=
EF
2
=
17
2

球半径DG=
17
4
+4
=
33
4
=
33
2

∴外接球的表面积为4πDG2=4π×
33
4
=33π,
故答案为:33π.
点评:本题考查球的内接几何体,球的表面积的求法,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,棱柱ABCD-A1B1C1D1的底面ABCD为菱形,四边形AA1C1C也为菱形且∠A1AC=∠DAB=60°,平面AA1C1C⊥平面ABCD.
(Ⅰ)证明:BD⊥AA1
(Ⅱ)证明:平面AB1C∥平面DA1C1
(Ⅲ)在棱CC1上是否存在点P,使得平面PDA1和平面DA1C1所成锐二面角的余弦值为
30
31
?若存在,求出点P的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形ABCD与梯形CDEF所在的平面互相垂直,CD⊥DE,CF∥DE,CD=CF=2,DE=4,G为AE的中点.
(Ⅰ)求证:FG∥平面ABCD;
(Ⅱ)求证:平面FAD⊥平面FAE;
(Ⅲ)求平面FAE与平面ABCD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
与抛物线y2=
2
3
bx
有一个公共交点为(3,
2
)
,则此双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式(k-1)x2-2(k-1)x+3(k+1)>0对于任何x∈R都成立,则k∈
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方体ABCD-A1B1C1D1,截去三个角A-BDA1,C-BDC1,B1-BA1C1后形成的几何体的体积与原正方体的体积之比值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某班在开展汉字听写比较活动中,规定评选一等奖和二等奖的人数之和不超过10人,一等奖人数与二等奖人数之差小于等于2人,一等奖人数不少于3人,且一等奖奖品价格为3元,二等奖奖品价格为2元,则本次活动购买奖品的最少费用为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若曲线x2+y2=9上各点的横坐标保持不变,纵坐标缩短为原来的一半,则所得曲线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知i为虚数单位,则复数2i(1+i)的模是(  )
A、4
B、2
2
C、3
2
D、8

查看答案和解析>>

同步练习册答案