精英家教网 > 高中数学 > 题目详情
已知点A(1,1)而且F1是椭圆
x2
9
+
y2
5
=1的左焦点,P是椭圆上任意一点,求|PF1|+|PA|的最大值和最小值.
考点:椭圆的应用
专题:综合题,圆锥曲线的定义、性质与方程
分析:|PF1|+|PF2|=2a=6,|PF1|=6-|PF2|,所以,|PF1|+|PA|=6-|PF2|+|PA|=6+(|PA|-|PF2|),由此结合图象能求出|PF1|+|PA|的最小值.
解答: 解:∵|PF1|+|PF2|=2a=6
∴|PF1|=6-|PF2|
∴|PF1|+|PA|=6-|PF2|+|PA|=6+(|PA|-|PF2|)
当点P位于P1时,|PA|-|PF2|的差最小,其值为-|AF2|=-
2
此时,|PF1|+|PA|也得到最小值,其值为6-
2

当点P位于P2时,|PA|-|PF2|的差最大,其值为|AF2|=
2
此时,|PF1|+|PA|也得到最大值,其值为6+
2
点评:本题考查椭圆的性质和应用,考查椭圆的定义,解题时要注意数形结合法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若P={x|x<1},Q={x|x>-1},则(  )
A、∁RP⊆Q
B、Q⊆P
C、P⊆Q
D、Q⊆∁RP

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的焦距是8,椭圆上任意一点到两焦点F1、F2的距离之和为10.
(1)求椭圆方程;
(2)在(1)的椭圆上求一点P,使PF1⊥PF2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(
x-1
x+1
)=
x2-1
x2+1
,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是等差数列,公差为d,首项a1=3,前n项和为Sn.令cn=(-1)nSn(n∈N*),{cn}的前20项和T20=330.数列{bn}满足bn=2(a-2)dn-2+2n-1,a∈R.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn+1≤bn,n∈N*,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若椭圆上存在一点P,它到椭圆中心和长轴一个端点的连线互相垂直,求椭圆离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x+a
1-x
(a∈R)

(1)若a=1,求f(x)的值域;
(2)若不等式f(x)≤2对x∈[-8,-3]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x+
1
|x|

(1)指出的f(x)值域;
(2)求函数g(x)=f(x)-p(p∈R)的零点的个数.
(3)若函数f(x)对任意x∈[-2,-1],不等式f(mx)+mf(x)<0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(x+1)2+(y+1)2≤4,则2x-y的最大值为
 

查看答案和解析>>

同步练习册答案