精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ex+e-x,其中e是自然对数的底数.
(1)证明:f(x)是R上的偶函数;
(2)若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围.
考点:函数恒成立问题
专题:综合题,函数的性质及应用
分析:(1)根据函数奇偶性的定义即可证明f(x)是R上的偶函数;
(2)利用参数分离法,将不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,进行转化求最值问题即可求实数m的取值范围.
解答: (1)证明:∵f(x)=ex+e-x
∴f(-x)=e-x+ex=f(x),即函数:f(x)是R上的偶函数;
(2)解:若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,
即m(ex+e-x-1)≤e-x-1,
∵x>0,
∴ex+e-x-1>0,
即m≤
e-x-1
ex+e-x-1
在(0,+∞)上恒成立,
设t=ex,(t>1),则m≤
1-t
t2-t+1
在(1,+∞)上恒成立,
1-t
t2-t+1
=-
t-1
(t-1)2+(t-1)+1
=-
1
t-1+
1
t-1
+1
≥-
1
3
,当且仅当t=2时等号成立,
∴m≤-
1
3
点评:本题主要考查函数奇偶性的判定,函数单调性和最值的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1,点E,F,G分别是线段B1B,AB和A1C上的动点,观察直线CE与D1F,CE与D1G.给出下列结论:
①对于任意给定的点E,存在点F,使得D1F⊥CE;
②对于任意给定的点F,存在点E,使得CE⊥D1F;
③对于任意给定的点E,存在点G,使得D1G⊥CE;
④对于任意给定的点G,存在点E,使得CE⊥D1G.
其中正确结论的序号是(  )
A、①③B、①④C、②③D、②④

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,a3+a7=15,则a2+a8=(  )
A、10B、15C、12D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

空间四边形ABCD的每条边和对角线的长都等于a,点M、N分别是边AB、CD的中点,求证:
(1)MN为AB和CD的公垂线;     
(2)求MN的长;
(3)求异面直线AN与CM所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的不等式ax2-6x+a2<0的解集是(1,m),求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直四棱柱ABCD-A1B1C1D1的底面ABCD为菱形,AB=1,AA1=
6
2
,∠ABC=60°.证明:BD1⊥平面AB1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知离心率为
1
2
的椭圆C1的左、右焦点分别为F1,F2,抛物线C2:y2=4x的焦点为F2
(Ⅰ)求椭圆C1的标准方程;
(Ⅱ)若过焦点F2的直线l与抛物线C2交于A,B两点,问在椭圆C1上且在直线l外是否存在一点M,使直线MA,MF2,MB的斜率依次成等差数列,若存在,请求出点M的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:(
1
2
)2+(
1
2
)4+(
1
2
)6+…+(
1
2
)n-1
(n为奇数).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图(1),在等腰梯形CDEF中,CB,DA是梯形的高,AE=BF=2,AB=2
2
,现将梯形沿CB,DA折起,使EF∥AB且EF=2AB,得一简单组合体ABCDEF如图(2)示,已知M,N分别为AF,BD的中点.
(Ⅰ)求证:MN∥平面BCF;
(Ⅱ)若直线DE与平面ABFE所成角的正切值为
2
2
,则求平面CDEF与平面ADE所成的锐二面角大小.

查看答案和解析>>

同步练习册答案