精英家教网 > 高中数学 > 题目详情
10.已知$\frac{m}{1-i}=1+ni$,其中m、n是实数,i是虚数单位,则m+ni=(  )
A.1+2iB.1-2iC.2+iD.2-i

分析 把已知等式变形,利用复数代数形式的乘法运算化简,再由复数相等的条件求得m,n的值得答案.

解答 解:由$\frac{m}{1-i}=1+ni$,得m=(1+ni)(1-i)=1+n+(n-1)i,
∴$\left\{\begin{array}{l}{n-1=0}\\{m=1+n}\end{array}\right.$,得m=2,n=1.
∴m+ni=2+i.
故选:C.

点评 本题考查复数代数形式的乘除运算,考查了复数相等的条件,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知物体的运动方程为s=$\frac{1}{4}{t^4}-4{t^3}+16{t^2}$(t表示时间,单位:秒;s表示位移,单位:米),则瞬时速度为0米每秒的时刻是(  )
A.0秒、2秒或4秒B.0秒、2秒或16秒C.0秒、4秒或8秒D.2秒、8秒或16秒

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合A={f(x)|f(x)+f(x+2)=f(x+1)},$g(x)=sin(\frac{πx}{3})$.
(1)求证:g(x)∈A;
(2)g(x)是周期函数,据此猜想A中的元素一定是周期函数,判断该猜想是否正确,并证明你的结论;
(3)g(x)是奇函数,据此猜想A中的元素一定是奇函数,判断该猜想是否正确,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知曲线y=x3在(a,b)处的切线斜率为3,那么a的值是(  )
A.-1B.1C.-1或1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,CB=3,CA=4,$|{\overrightarrow{CA}+\overrightarrow{CB}}|=|{\overrightarrow{CA}-\overrightarrow{CB}}|$,M是线段AB上的动点(含A,B两个端点).若$\overrightarrow{C{M}}=x\overrightarrow{C{A}}+y\overrightarrow{C{B}}$,(x,y∈R),则|x$\overrightarrow{CA}$-y$\overrightarrow{CB}$|的取值范围是[$\frac{12}{5}$,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.对于0<a<1,给出下列四个不等式(  )
①loga(1+a)<loga(1+$\frac{1}{a}$)②loga(1+a)>loga(1+$\frac{1}{a}$); ③a1+a<a${\;}^{1+\frac{1}{a}}$;④a1+a>a${\;}^{1+\frac{1}{a}}$
其中成立的是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=\frac{x^2}{{1+{x^2}}}$.
(1)分别求$f(2)+f({\frac{1}{2}}),f(3)+f({\frac{1}{3}}),f(4)+f({\frac{1}{4}})$的值,并归纳猜想一般性结论(不要求证明);
(2)求值:$2f(2)+2f(3)+…+2f({2017})+f({\frac{1}{2}})+f({\frac{1}{3}})+…f({\frac{1}{2017}})+\frac{1}{2^2}f(2)+\frac{1}{3^2}f(3)+…+\frac{1}{{{{2017}^2}}}•f({2017})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.图(1)、(2)、(3)、(4)分别包含1个、5个、13个、25个第二十九届北京奥运会吉祥物“福娃迎迎”,按同样的方式构造图形,设第n个图形包含f(n)个“福娃迎迎”.则f(6)=61.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设点$F({0,\frac{1}{4}})$,动圆A经过点F且和直线$y=-\frac{1}{4}$相切,记动圆的圆心A的轨迹为曲线C.
(1)求曲线C的方程;
(2)设曲线C上一点P的横坐标为t(t>0),过P的直线交C于一点Q,交x轴于点M,过点Q作PQ的垂线交C于另一点N,若MN是C的切线,求t的最小值.

查看答案和解析>>

同步练习册答案