精英家教网 > 高中数学 > 题目详情
7.运行如图所示的程序框图,当输入实数x的值为-3时,输出的函数值为12,当输入实数x的值为1时,输出的函数值为2.
(1)求函数f(x)的解析式;
(2)当输出结果为80时,求输入的x的值.

分析 (1)根据输入实数x的值为-3时,输出的函数值为12,当输入实数x的值为1时,输出的函数值为2,求得a、b,可得函数f(x)的解析式;
(2)当输出结果为80时,根据分段函数,求输入的x的值.

解答 解:(1)由程序框图知,
∵输入x=-3<0,输出f(-3)=-3b=12,∴b=-4.
∵输入x=1≥0,输出f(1)=a-1=2,∴a=3.
∴f(x)=$\left\{\begin{array}{l}{{3}^{x}-1,x≥0}\\{-4x,x<0}\end{array}\right.$.
(2)由(1)知:
①当x<0时,f(x)=-4x=80,∴x=-20;
②当x≥0时,f(x)=3x-1=80,∴x=4.
综上,输入的x的值为4或-20.

点评 本题借助考查选择结构程序框图,考查了分段函数求函数值,解题的关键是利用程序框图求得分段函数的解析式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知集合M={1,2,3},N={2,3,4},则M∪N={1,2,3,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)=x2-bx+a,且f(0)=3,f(2-x)=f(x),则下列关系成立的是(  )
A.f(bx)≥f(axB.f(bx)≤f(ax
C.f(bx)<f(axD.f(bx)与f(ax)的大小关系不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)的定义域是[0,1],则函数F(x)=f[log$\frac{1}{2}$(3-x)]的定义域(  )
A.{x|0≤x<1}B.{x|2≤x<$\frac{5}{2}$}C.{x|2≤x≤$\frac{5}{2}$}D.{x|2<x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,PA垂直于矩形ABCD所在的平面,E、F分别是AB、PD的中点,∠ADP=45°.
(1)求证:AF∥平面PCE.
(2)求证:平面PCD⊥平面PCE.
(3)若AD=2,CD=3,求点F到平面PCE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若函数f(x)=x2+mx+m-1的一个零点在[0,3]上,则m的取值范围是[-2,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.$\overrightarrow a$=(-1,-5,-2),$\overrightarrow b$=(x,2,x+2),若$\overrightarrow a⊥\overrightarrow b$,则x=(  )
A.0B.-6C.$-\frac{14}{3}$D.±6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.抛物线x2=2py(p>0)上一 点A($\sqrt{3}$,m)(m>1)到抛物线准线的距离为$\frac{13}{4}$,点A关于y轴的对称点为B,O为坐标原点,△OAB的内切圆与OA切于点E,点F为内切圆上任意一点,则$\overrightarrow{OE}•\overrightarrow{OF}$的取值范围为$[3-\sqrt{3},3+\sqrt{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知实数x,y满足x2+4y2≤4,则|x+2y-4|+|3-x-y|的最大值为(  )
A.6B.12C.13D.14

查看答案和解析>>

同步练习册答案