精英家教网 > 高中数学 > 题目详情
6.二项式(3$\sqrt{x}$-1)6的展开式中各项系数的和是64.

分析 利用赋值法,令x=1,即可求出二项式展开式的各项系数和.

解答 解:令x=1,得二项式(3$\sqrt{x}$-1)6的展开式中各项系数的和是:
(3-1)6=64.
故答案为:64.

点评 本题考查了二项式展开式的各项的二项式系数和的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知数列{an}满足a1=0,an+1=$\frac{{{a_n}-2}}{{\frac{{5{a_n}}}{4}-2}}$,则a2014等于(  )
A.0B.2C.$\frac{4}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.由动点P向圆x2+y2=2引两条切线PA、PB,切点分别为A、B,∠APB=60°,则动点P的轨迹方程x2+y2=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知点P为直线l:x-2y-3=0 上的动点,A(0,1),B(4,3),则|AP|+|BP|的最小值为(  )
A.2$\sqrt{5}$B.5$\sqrt{2}$C.6D.2$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=x2+x,x1,x2∈R,则下列不等式中一定成立的不等式的序号为①
①f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{f({x}_{1})+f({x}_{2})}{2}$;
②f($\frac{{x}_{1}+{x}_{2}}{2}$)<$\frac{f({x}_{1})+f({x}_{2})}{2}$;
③f($\frac{{x}_{1}+{x}_{2}}{2}$)≥$\frac{f({x}_{1})+f({x}_{2})}{2}$;
④f($\frac{{x}_{1}+{x}_{2}}{2}$)>$\frac{f({x}_{1})+f({x}_{2})}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某地采用摇号买车的方式,共有20万人参加摇号,每个月有2万个名额,如果每个月摇上的退出摇号,没有摇上的继续进行下月摇号,则每个人摇上号平均需要5个月的时间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知等边△ABC中,E,F分别为AB,AC边的中点,N为BC边上一点,且CN=$\frac{1}{4}$BC,将△AEF沿EF折到△A′EF的位置,使平面A′EF⊥平面EF-CB,M为EF中点.
(1)求证:平面A′MN⊥平面A′BF;
(2)求二面角E-A′F-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.当m为何值时,方程x2-4|x|+5=m有4个互不相等的实数根?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函f(x)=$\left\{\begin{array}{l}{2cos\frac{πx}{3}(x≤2000)}\\{{2}^{x-2008}(x>2000)}\end{array}\right.$ 则f[f(2015)]等于(  )
A.$\sqrt{3}$B.-$\sqrt{3}$C.1D.-1

查看答案和解析>>

同步练习册答案