精英家教网 > 高中数学 > 题目详情
某学校对教师的年龄及学历状况进行调查,其结果(人数分布)如下表:
学历 35岁以下 35-50岁 50岁以上
本科 80 30 20
研究生 x 20 y
(Ⅰ)在35-50岁年龄段的教师中用分层抽样的方法抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有1人的学历为研究生的概率;
(Ⅱ)若对全体教师按年龄状况用分层抽样的方法抽取N个人,其中50岁以上的有10人,再从这N个人中随机抽取出1人,此人的年龄在50岁以上的概率为
5
39
,求N的值;
(Ⅲ)在(Ⅱ)的条件下,若抽取的N个人中35岁以下的有48人,求x和y的值.
考点:古典概型及其概率计算公式,分层抽样方法
专题:概率与统计
分析:(I)用分层抽样得到学历为本科的人数,后面的问题是一个古典概型,试验发生包含的事件是从5个人中容易抽取2个,事件数可以列举出,满足条件的事件是至少有1人的学历为研究生,从列举出的事件中看出结果.
(II)根据在抽样过程中每个个体被抽到的概率相等,表示出年龄为50岁以上的概率,利用解方程思想解出x,y的值.
解答: 解:(Ⅰ)由表中信息,在35~50岁年龄段的教师中本科和研究生学历分别有30人和20人,用分层抽样的方法在35~50岁中抽取一个容量为5的样本,则被抽取到的5人中,3人的学历为本科,2人的学历为研究生.
分别记作A1,A2,A3和B1、B2
从中任取2人的基本事件有:(A1,B1)、(A1,B2)、
(A2,B1)、(A2,B2)、(A3,B2)、(A1,A2)、(A2,A3)、(A1,A3)、(A3,B1)、(B1,B2),共10个
其中至少有1人的学历为研究生的基本事件有7个:(A1,B1)、(A1,B2)、
(A2,B1)、(A2,B2)、(A3,B2)、(A3,B1)、(B1,B2)∴至少有1人的学历为研究生的概率为
7
10

(Ⅱ)解:依题意,得
10
N
=
5
39

解得N=78
∵按年龄分层抽取78人,其中35岁以下的有48人,50岁以上的有10人.
48
80+x
=
20
30+20
=
10
20+y
,解得x=40,y=5
点评:本题考查分层抽样方法,考查古典概型的概率及其概率公式,考查利用列举法列举出试验包含的所有事件,列举法是解决古典概型的首选方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积可能是(  )
A、
20
3
cm3
B、6cm3
C、
14
3
cm3
D、4cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=-7,其前n项和为Sn,等比数列{bn}中,b1=1,公比为q,且b2+S2=-8.a4=a1+3q
(Ⅰ)求an与bn
(Ⅱ)求Sn,并求Sn当最小时n的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且对任意n∈N*,都有Sn+an=2n成立.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=an+1-an,xn=
1
1+bn
+
1
1-bn+1
,若记数列{an}的前n项和为Tn,求证:Tn>2n-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0),已知点(1,e)和(e,
3
2
)都在椭圆C上,其中e为椭圆C的离心率.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=kx+m与椭圆C相交于P,Q两点,若在椭圆C上存在点R,使四边形OPRQ为平行四边形,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,A(1,0),B(2,0)是两个定点,曲线C的参数方程为
x=2+cosθ
y=sinθ
(θ为参数).
(Ⅰ)将曲线C的参数方程化为普通方程;
(Ⅱ)以A(1,0)为极点,|
AB
|为长度单位,射线AB为极轴建立极坐标系,求曲线C的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

求直线
x=-1+2t
y=-2t
被曲线
x=1+4cosθ
y=-1+4sinθ
截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点D是△ABC边BC上的点,
BD
=2
DC
,过D分别作直线交AB,AC于E,F两点,若
AE
AB
AF
AC
(λ>0,μ>0),则λ+2μ的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过点M(-3,-
3
2
)且被圆x2+y2=25截得弦长为8的直线的方程为
 

查看答案和解析>>

同步练习册答案