精英家教网 > 高中数学 > 题目详情
17.已知椭圆3x2+y2=12,过原点且倾斜角分别为θ和π-θ(0<θ≤$\frac{π}{4}$)的两条直线分别交椭圆于点A,C和点B,D,则四边形ABCD的面积的最大值等于12,此时θ=$\frac{π}{4}$.

分析 设出直线过原点且倾斜角为θ的直线的方程和椭圆方程联立即可表示出矩形ABCD的面积;运用函数的单调性,求得函数f(t)的最小值,即可得到所求面积的最大值.

解答 解:设经过原点且倾斜角为θ的直线方程为y=xtanθ,
代入3x2+y2=12,
求得x2=$\frac{12}{3+ta{n}^{2}θ}$,y2=$\frac{12ta{n}^{2}θ}{3+ta{n}^{2}θ}$,
由对称性可知四边形ABCD为矩形,
又由于0<θ≤$\frac{π}{4}$,
所以四边形ABCD的面积S=4|x||y|=$\frac{48tanθ}{3+ta{n}^{2}θ}$,
当0<θ≤$\frac{π}{4}$时,0<tanθ≤1,
设t=tanθ,则S=$\frac{48t}{3+{t}^{2}}$=$\frac{48}{t+\frac{3}{t}}$,(0<t≤1),
设f(t)=$\frac{3}{t}$+t,
f′(t)=1-$\frac{3}{{t}^{2}}$,
当0<t≤1时,f′(t)<0,f(t)递减,
因为f(t)在t=1时,取最小值,
所以f(t)min=f(1)=4,
所以当tanθ=1,即θ=$\frac{π}{4}$时,
Smax=12.
故答案为:12,$\frac{π}{4}$.

点评 本题主要考查直线和椭圆的相关知识,三角函数的最值问题,考查换元法的思想,以及运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.某商场第一年销售计算机5000台,如果平均每年销售量比上一年增加10%,那么从第一年起,大约几年可使总销售量达到30000台?用语句描述.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=1g(-x2+x+6)的单调递减区间为[$\frac{1}{2}$,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.一个V形容器,里面分层放有乒乓球,假设从下往上,第-层放有3个,第二层放有5个,第三层放有7个,以此类推,最上面一层放有33个,问:
(1)一共放有多少层乒乓球?
(2)第六层放有多少个乒乓球?
(3)容器内共放有多少个乒乓球?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设p:|2x+1|>a,q:$\frac{x-1}{2x-1}$>0,若q是p的充分非必要条件,则实数a的取值范围是(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求函数y=sin2x+2sinxcosx-cos2x的最小正周期和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在正方形ABCD中,边长为1,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,则|$\overrightarrow{a}$$+\overrightarrow{b}$|=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若函数f(x)=4x2-(m-1)x+5,在[2,+∞)上是增函数,在(-∞,2]上 是减函数,求f(-1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一物体在力F(x)=3x2-2x+5(力单位:N,位移单位:m)作用下沿与力F(x)相同的方向由x=5m直线运动到x=10m所做的功是(  )
A.925JB.850JC.825JD.800J

查看答案和解析>>

同步练习册答案