精英家教网 > 高中数学 > 题目详情
7.已知等比数列{an}的各项都是正数,且a7a8=4,则log4a1+log4a2+log4a3+…+log4a14=7.

分析 运用等比数列的性质和对数的运算法则,计算即可得到所求值.

解答 解:由等比数列的性质可得,
a1a14=a2a13=a3a12=…=a7a8=4,
则log4a1+log4a2+log4a3+…+log4a14=log4(a1a2…a14
=log447=7.
故答案为:7.

点评 本题考查等比数列的性质和对数的运算性质,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知α,β,γ是锐角三角形的三个内角,且sin2β=sinαcosγ+sinγcosα
(1)求角β;
(2)若2cos2α+3=8sin($\frac{π}{4}+\frac{α}{2}$)sin($\frac{π}{4}-\frac{α}{2}$),求角α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数y=lg(ax+1)定义域为R,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知在△ABC中,角A、B、C所对的边分别为a、b、c,已知cosC+(cosA-sinA)cosB=0.
(1)求∠B的大小;
(2)若a+c=1,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某商朗朗上口门前有8个停车位,现有4辆轿车和3辆小货车要停靠在该门前,若轿车不相邻,小货车不相邻(中间隔空车位也算不相邻),则不同的停放方法的种数为1152.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.从点A(6,8)向圆O:x2+y2=16任意引一割线l交圆于B,C两点,求弦BC中点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.数列{an}满足a1=3,an+1=$\frac{{a}_{n}-1}{{a}_{n}}$,则a2015=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若不等式(a-4)x2+2(a-4)x+4≥0对一切x∈R恒成立,则a的取值范围是[4,8].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知数列{an}满足an=$\frac{1}{3}$n3-$\frac{5}{4}$n2+3+m,若数列的最小项为1,则m的值为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.-$\frac{1}{4}$D.-$\frac{1}{3}$

查看答案和解析>>

同步练习册答案