精英家教网 > 高中数学 > 题目详情
10.已知随机变量ξ服从正态分布N(μ,16),且P(ξ<-2)+P(ξ≤6)=1,则μ=(  )
A.-4B.4C.-2D.2

分析 由对称性得图象关于x=μ对称且结合题意得到P(ξ<-2)+P(ξ≤6)=1,从而得出-2和6关于直线x=μ对称,利用中点坐标公式求出μ的值.

解答 解:∵P(ξ<-2)+P(ξ≤6)=1,
∴P(ξ<-2)=1-P(ξ≤6),
即P(ξ<-2)=P(ξ>6),
由于随机变量ξ服从正态分布N(μ,16),
曲线关于x=μ对称,
P(ξ<-2)=P(ξ>6)表明-2和6关于直线x=μ对称,
∴μ=$\frac{6-2}{2}$=2.
故选:D.

点评 本题考查正态分布曲线的特点及曲线所表示的意义、正态分布.正态曲线有两个特点:(1)正态曲线关于直线x=μ对称;(2)在正态曲线下方和x轴上方范围内的区域面积为1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知角α的终边过点P(3,4),则$cos(\frac{5π}{2}+α)$=-$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线l:kx-y+2k-1=0与圆x2+y2=6交于A,B两点,若|AB|=2$\sqrt{2}$,则k=(  )
A.-$\frac{3}{4}$B.$\frac{3}{4}$C.-$\frac{4}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知a,b,c∈R*,设S=$\frac{a}{b+c}$+$\frac{b}{a+c}$+$\frac{c}{a+b}$,则S与1的大小关系是S>1(用不等号连接).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=-alnx+x-$\frac{a}{x}$(a为常数)有两个不同的极值点.
(1)求实数a的取值范围;
(2)记f(x)的两个不同的极值点分别为x1,x2,若不等式f(x1)+f(x2)>λ(x1+x22恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.我们把圆心在一条直线上,且相邻两圆彼此外切的一组圆叫做“串圆”,在如图所示的“串圆”中,圆C1和圆C3的方程分别为:x2+y2=1和(x-4)2+(y-2)2=1,若直线ax+2by-2=0(a,b>0)始终平分圆C2的周长,则$\frac{1}{a}$+$\frac{2}{b}$的最小值为(  )
A.1B.5C.4$\sqrt{2}$D.3+2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知向量$\overrightarrow{a}$=(4,-6),$\overrightarrow{b}$=(9,m),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则m的值为(  )
A.-$\frac{54}{4}$B.-6C.6D.$\frac{54}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a11+b11=(  )
A.76B.123C.199D.322

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球不喜爱打篮球合计
男生15520       
女生102030
合计252550
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为$\frac{1}{2}$.
(1)请将上面的列联表补充完整;
(2)是否有99%的把握认为喜爱打篮球与性别有关?说明你的理由.

查看答案和解析>>

同步练习册答案