分析 求出f(x)的表达式,求出sin2x和cos2x的值,从而求出tan2x的值即可.
解答 解:∵$\overrightarrow{a}$=(3sinx,2cosx+2sinx),$\overrightarrow{b}$=(2cosx,2cosx-2sinx),
∴f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$=6sinxcosx+4cos2x-4sin2x=3sin2x+4cos2x,
由f(x)=5,得:3sin2x+4cos2x=5①,而sin22x+cos22x=1②,
由①②解得:$\left\{\begin{array}{l}{sin2x=\frac{3}{5}}\\{cos2x=\frac{4}{5}}\end{array}\right.$,
∴tan2x=$\frac{3}{4}$,
故答案为:$\frac{3}{4}$.
点评 本题考查了平面向量数量积的运算性质,考查三角恒等变换,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{π}{3}$,$\frac{π}{3}$] | B. | [-$\frac{π}{4}$,$\frac{π}{2}$] | C. | [-$\frac{π}{3}$,$\frac{π}{6}$] | D. | [0,$\frac{π}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 优秀 | 非优秀 | 合计 | |
| 甲班 | 10 | ||
| 乙班 | 30 | ||
| 合计 | 100 |
| P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com