分析 (1)由题意整体配凑可得f($\sqrt{x}$+1)=($\sqrt{x}$+1)2-1,可得f(x)=x2-1,x≥1;
(2)由已知式子可得2f(x)+f($\frac{1}{x}$)=$\frac{1}{x}$,联立消去f($\frac{1}{x}$)解方程组可得;
(3)由题意整体配凑可得f(1+$\frac{1}{x}$)=(1+$\frac{1}{x}$)2-(1+$\frac{1}{x}$)+1,可得f(x)=x2-x+1,x≠1
解答 解:(1)由题意可得f($\sqrt{x}$+1)=x+2$\sqrt{x}$=x+2$\sqrt{x}$+1-1=($\sqrt{x}$+1)2-1,
故f(x)=x2-1,x≥1;
(2)∵函数f(x)满足2f($\frac{1}{x}$)+f(x)=x,
∴2f(x)+f($\frac{1}{x}$)=$\frac{1}{x}$,联立消去f($\frac{1}{x}$)
可解得f(x)=$\frac{2}{3x}$-$\frac{x}{3}$,x≠0;
(3)∵f(1+$\frac{1}{x}$)=$\frac{1+{x}^{2}}{{x}^{2}}$+$\frac{1}{x}$=$\frac{1}{{x}^{2}}$+$\frac{1}{x}$+1=$\frac{1}{{x}^{2}}$+2•$\frac{1}{x}$+1-$\frac{1}{x}$=(1+$\frac{1}{x}$)2-(1+$\frac{1}{x}$)+1,
∴f(x)=x2-x+1,x≠1
点评 本题考查函数解析式的求解,整体配凑是解决问题的关键,属中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2,2] | B. | (-∞,-2]∪[2,+∞) | C. | (-2,2) | D. | (-∞,-2)∪(2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | -2 | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{10}$ | B. | 10 | C. | 2$\sqrt{10}$ | D. | 20 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com