精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=ax(a>0,a≠1)的图象过点(2,9),g(x)=logbx+f(x)且g(2)=10
(1)求a、b的值.
(2)若g(x+1)-3f(x)<1,求x的取值范围.

分析 (1)利用待定系数法建立方程关系即可求a、b的值.
(2)化简不等式,利用指数函数和对数函数的性质进行求解即可.

解答 解:(1)∵f(x)=ax(a>0,a≠1)的图象过点(2,9),
∴a2=9,解得a=3,
则f(x)=3x
∵g(x)=logbx+f(x)且g(2)=10
∴g(2)=logb2+f(2)=10,
即logb2=10-f(2)=10-9=1,
解得b=2.
即a=3,b=2.
(2)∵$g(x)={log_2}x+{3^x}$,
∴由$g(x+1)-3f(x)={log_2}(x+1)+{3^{x+1}}-3•{3^x}={log_2}(x+1)<1$,
解得0<x+1<2,
即-1<x<1.

点评 本题主要考查指数函数和对数函数的解析式以及不等式的求解,利用待定系数法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.过点P(2,3),并且在两坐标轴上的截距相等的直线方程是(  )
A.x-y+1=0B.x-y+1=0或3x-2y=0
C.x+y-5=0D.x+y-5=0或3x-2y=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.F1,F2分别是椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左右焦点,过F1的直线与椭圆相交于A、B两点,则△ABF2的周长是8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax3-x2+bx(a,b∈R),曲线y=f(x)在点(3,f(3))处的切线方程为y=-9.
(1)求f(x)的单调递减区间;
(2)记g(x)=f′(x)-kxlnx-k(k为正整数,f′(x)为y=f(x)导函数),曲线y=g(x)上的点都在不等式y>-6x-4表示的平面区域内,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知tanα=$\frac{2}{5}$,tanβ=$\frac{1}{4}$,则tan(α-β)等于(  )
A.$\frac{13}{18}$B.$\frac{13}{22}$C.$\frac{1}{6}$D.$\frac{3}{22}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,a、b、c分别是A、B、C的对边,且a2+c2-b2+ac=0
(1)求角B的大小;
(2)若△ABC中sinC=2sinA,且b=$\sqrt{14}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(x)是定义在[m,4m+5]上的奇函数,则m=-1,当x>0时,f(x)=lg(x+1),则当x<0时,f(x)=-lg(1-x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}中,an>0,且3an+12=an(an-2an+1),a1=1.
(1)求证:数列{an}是等比数列,并求其通项公式;
(2)若bn=$\frac{1}{n}$(log3a1+log3a2+…+log3an),且数列{bn}的前n项和为Tn,求Tn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥S-ABCD中,底面ABCD为菱形,∠BAD=60°,平面SAD⊥平面ABCD,SA=SD,E,P,Q分别是棱AD,SC,AB的中点.
(Ⅰ)求证:PQ∥平面SAD;
(Ⅱ)求证:AC⊥平面SEQ;
(Ⅲ)如果SA=AB=2,求三棱锥S-ABC的体积.

查看答案和解析>>

同步练习册答案