精英家教网 > 高中数学 > 题目详情
已知0<k<1+
2
,试比较1+
1
k
与k-1的大小.
考点:不等式比较大小
专题:不等式的解法及应用
分析:利用“作差法”即可比较出大小.
解答: 解:∵0<k<1+
2

∴1+
1
k
-(k-1)=2+
1
k
-k=
-(k2-2k-1)
k
=
-(k-1-
2
)(k-1+
2
)
k
>0,
∴1+
1
k
>k-1.
点评:本题考查了“作差法”比较数的大小,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°,E为BC中点
(Ⅰ)证明:A1C∥平面AB1E
(Ⅱ)证明:AB⊥A1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

3+33+333+…+
33…3
n个
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

分别指出由下列各组命题构成的“p∧q”,“p∨q“,“非p“命题的真假.
①p:-4<0;q:4>0;
②p:25是5的倍数;q:25是4的倍数;
③p:2是x+1=0的根;q:-1是x+1=0的根;
④p:∅=0;q:∅={0}.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)在(0,+∞)上单调递增,且f(1)=0,当f(lgt)<0时,则t的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}、{bn}的各项均为正数且对任意n∈N+,都有an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列,且a1=10,a2=15.
(1)求证:数列{
bn
}是等差数列并求出数列{an}、{bn}的通项公式;
(2)设Sn=
1
a1
+
1
a2
+…+
1
an
,如果对任意n∈N+,不等式2a•Sn<2-
bn
an
恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2
sinx
1+cos2x-sin2x

(1)求函数的定义域;
(2)用定义判断f(x)的奇偶性;
(3)在[-π,π]上作出f(x)的图象;
(4)写出f(x)的最小正周期及单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax,g(x)=-x2-1.
(Ⅰ)若函数y=f(x)的图象始终在函数y=g(x)的图象的上方,求实数a的取值范围;
(Ⅱ)若函数y=f(x)与y=g(x)的图象有两条公切线,且由四个切点组成的四边形的周长为6,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,如果输出a的值大于2014,判断框内为k≤m,则整数m的最小值为
 

查看答案和解析>>

同步练习册答案