| A. | $8\sqrt{2}$ | B. | $4\sqrt{2}$ | C. | 12 | D. | $5\sqrt{10}$ |
分析 判断三视图复原的几何体的形状,底面为等腰直角三角形,一条侧棱垂直底面的一个顶点,结合数据求出外接球的半径,由此能求出结果.
解答
解:三视图复原的几何体如图,
它是底面为等腰直角三角形,一条侧棱垂直底面的一个顶点,
它的外接球,就是扩展为长方体的外接球,
外接球的直径是2$\sqrt{2}$,
该几何体的外接球的体积V1=$\frac{4}{3}$π($\sqrt{2}$)3=$\frac{8\sqrt{2}}{3}$π.
V2=2×($\frac{1}{3}$×12×π×1)=$\frac{2}{3}$π,
∴V1:V2=$\frac{8\sqrt{2}}{3}$π:$\frac{2}{3}$π=4$\sqrt{2}$.
故选:B.
点评 本题考查三视图求几何体的外接球的体积,考查空间想象能力,计算能力,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1) | B. | (1,2) | C. | (2,3) | D. | (3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 井号I | 1 | 2 | 3 | 4 | 5 | 6 |
| 坐标(x,y)(km) | (2,30) | (4,40) | (5,60) | (6,50) | (8,70) | (1,y) |
| 钻探深度(km) | 2 | 4 | 5 | 6 | 8 | 10 |
| 出油量(L) | 40 | 70 | 110 | 90 | 160 | 205 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com