精英家教网 > 高中数学 > 题目详情
20.如图,一个直角走廊的宽分别为a米、b米,一铁棒欲通过该直角走廊,设铁棒与廊壁成θ角.求:
(1)棒长L(用含θ的表达式表示);
(2)当a=b=2米时,能够通过这个直角走廊的铁棒的长度的最大值.(参考公式:sinθ+cosθ=$\sqrt{2}$sin(θ+$\frac{π}{4}$),sin2θ=2sinθcosθ).

分析 (1)利用直角三角形中的边角关系,求得L的解析式.
(2)利用三角恒等变换化简L的解析式,再利用二次函数的性质,即能够通过这个直角走廊的铁棒的长度L的最大值.

解答 解:(1)由题意可得棒长L=$\frac{a}{cosθ}$+$\frac{b}{sinθ}$.
(2)当a=b=2米时,能够通过这个直角走廊的铁棒的长度L=$\frac{a}{cosθ}$+$\frac{b}{sinθ}$=$\frac{2}{cosθ}$+$\frac{2}{sinθ}$=$\frac{2(sinθ+cosθ)}{sinθcosθ}$
=2$\sqrt{\frac{{(sinθ+cosθ)}^{2}}{{sin}^{2}{θ•cos}^{2}θ}}$=4$\sqrt{\frac{1+sin2θ}{{sin}^{2}2θ}}$=4$\sqrt{\frac{1}{{sin}^{2}2θ}+\frac{1}{sin2θ}}$.
令t=$\frac{1}{sin2θ}$,∵θ∈(0,$\frac{π}{2}$),2θ∈(0,π),∴t≥1.
L=4$\sqrt{{t}^{2}+t}$=$\sqrt{{(t+\frac{1}{2})}^{2}-\frac{1}{4}}$ 在[1,+∞)上单调递增,∴t≥4$\sqrt{2}$(米).
故当t=1,即θ=$\frac{π}{4}$时,L取得最小值,即能够通过这个直角走廊的铁棒的长度的最大值为4$\sqrt{2}$米.

点评 本题主要考查直角三角形中的边角关系,二次函数的性质应用,三角恒等变换,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知球O与正四棱柱ABCD-A1B1C1D1的底面ABCD及四个侧面都相切,对角线BD1与球面的两个交点分别为M,N,M为线段BD的中点,MN=$\sqrt{6}$.则球O的体积为$\frac{9}{2}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知${({x+\frac{1}{ax}})^6}$展开式的常数项是540,则由曲线y=x2和y=xa围成的封闭图形的面积为$\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和Sn满足6Sn=9an-1.
(I)求数列{an}的通项公式;
(Ⅱ)若函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的周期为π,且在x=$\frac{π}{6}$处取得最大值,最大值为a3,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=-sin2x-cosx+2,x∈[0.$\frac{2π}{3}$]的最大值和最小值的和为(  )
A.$\frac{7}{2}$B.$\frac{5}{2}$C.$\frac{3}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知θ∈[$-\frac{π}{3}$,$\frac{π}{4}}$],则函数y=tan2θ+2tanθ+3的最小值为2,其相应的θ值为$-\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知a1=2,点(an,an+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3,….
(1)求a3,a4的值;
(2)证明数列{lg(1+an)}是等比数列,并求数列{an}的通项公式;
(3)记bn=$\frac{1}{a_n}$+$\frac{1}{{{a_n}+2}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=4sinxcosx(x∈R),将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位,再向上平移1个单位,得到函数y=g(x)的图象,区间[a,b](a,b∈R且a<b)满足:y=g(x)在[a,b]上至少有20个零点,在所有满足上述条件的[a,b]中,b-a的最小值为(  )
A.10πB.$\frac{29π}{3}$C.$\frac{28π}{3}$D.$\frac{55π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设等比数列{an}的前n项和为Sn=2n+1-2;数列{bn}满足6n2-(t+3bn)n+2bn=0(t∈R,n∈N*).
(1)求数列{an}的通项公式;
(2)①试确定t的值,使得数列{bn}为等差数列;
②在①结论下,若对每个正整数k,在ak与ak+1之间插入bk个2,符到一个数列{cn}.设Tn是数列{cn}的前n项和,试求满足Tm=2cm+1的所有正整数m.

查看答案和解析>>

同步练习册答案