精英家教网 > 高中数学 > 题目详情
某几何体的三视图如图所示,则该几何体的体积为(  )
A、64+
32
3
B、64-
32
3
C、96
D、32
考点:由三视图求面积、体积
专题:计算题,空间位置关系与距离
分析:由三视图可知,该几何体是由棱柱与棱锥组成的组合体.
解答: 解:该几何体是由棱柱与棱锥组成的组合体;
其中棱柱的底面是边长为4的正方形,体高为4;
棱锥的底面是边长为4的正方形,体高为2;
故该几何体的体积为V=4×4×4+4×4×2×
1
3

=64+
32
3

故选:A.
点评:本题考查了简单组合体的体积求法及学生的空间想象力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|x2-16<0},B={x|x2-4x+3>0},则A∪B=(  )
A、(-4,1)∪(3,4)
B、(3,4)
C、(-4,4)
D、R

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|-1<x<2},B={x|-1<x<1},则A∩B=(  )
A、∅
B、{x|-1<x<2}
C、{x|-1<x<1}
D、{x|1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式
1
x
<1的解集为(  )
A、(1,+∞)
B、(-∞,0)∪(1,+∞)
C、(-∞,0)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若过点P(0,2)的直线l与抛物线y2=4x只有一个公共点,则这样的直线l的条数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是R上的奇函数,且对任意的实数a,b当a+b≠0时,都有
f(a)+f(b)
a+b
>0
(1)若a>b,试比较f(a),f(b)的大小;
(2)若存在实数x∈[
1
2
3
2
]使得不等式f(x-c)+f(x-c2)>0成立,试求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(
1
2x-1
+
1
2
)x3
(1)求函数的定义域;
(2)讨论f(x)的奇偶性;
(3)求证:对定义域内的所有x,f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

设计一个算法求S=12-22+32-42+…+92-102,并画出流程图.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sinx,1),
n
=(
3
Acosx,
A
2
cos2x)(A>0),函数f(x)=
m
n
的最大值为6.
(Ⅰ)求A;
(Ⅱ)将函数y=f(x)的图象向左平移
π
12
个单位,再将所得图象上各点的横坐标缩短为原来的
1
2
倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)在[0,
24
]上的值域.
(Ⅲ)若函数y=f(x)满足方程f(x)=k(3<k<6),求此方程在[0,
6
]内所有实数根之和.

查看答案和解析>>

同步练习册答案