精英家教网 > 高中数学 > 题目详情
6.已知y=f(x)是定义在R上的奇函数,当x>0时,f(x)=2x-1,则f(-2)=-3.

分析 根据题意,由函数的解析式计算可得f(2)的值,再有函数为奇函数分析可得f(-2)=-f(2),即可得答案.

解答 解:根据题意,当x>0时,f(x)=2x-1,
则f(2)=22-1=3,
又由y=f(x)是定义在R上的奇函数,
则f(-2)=-f(2)=-3;
故答案为:-3.

点评 本题考查函数奇偶性的应用,关键是充分利用函数的奇偶性分析.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知i为虚数单位,z(2i-1)=1+i,则复数z的共轭复数为(  )
A.$-\frac{1}{5}-\frac{3}{5}i$B.$\frac{1}{5}+\frac{3}{5}i$C.$-\frac{1}{5}+\frac{3}{5}i$D.$\frac{1}{5}-\frac{3}{5}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知命题p:?x∈R,2x+$\frac{x}{2}$=0;命题q:?x>0,x-x2<0,则下列命题是真命题的是(  )
A.p∧qB.(¬p)∧qC.p∧(¬q)D.(¬p)∨q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知等差数列{an}中,a2=6,前7项和S7=84,则a6=18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合M={x|-1<x<3},N={x|x2-6x+8<0},则M∩N=(  )
A.(1,3)B.(2,3)C.(2,4)D.(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx-$\frac{1}{2}$ax2+(1-a)x+1,a∈R.
( I)求函数f(x)的单调区间;
(Ⅱ)令g(x)=f(x)+ax-$\frac{13}{2}$,若a=2,正实数x1,x2满足g(x1)+g(x2)+x1x2=0,求x1+x2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数$f(x)=|\frac{x}{2}+\frac{1}{2a}|+|\frac{x}{2}-\frac{a}{2}|,(a>0)$.
(Ⅰ)证明:f(x)≥1;
(Ⅱ)若f(6)<5,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知定义在R上的偶函数f(x)在[0,+∞)单调递增,若f(lnx)<f(2),则x的取值范围是(  )
A.(0,e2B.(e-2,+∞)C.(e2,+∞)D.(e-2,e2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知曲线C上任意一点M到点F(0,1)的距离比它到直线l:y=-2的距离小1.
(Ⅰ)求曲线C的方程;
(Ⅱ)斜率不为0且过点P(2,2)的直线m与曲线C交于A,B两点,设$\overrightarrow{AP}$=λ$\overrightarrow{PB}$,当△AOB的面积为4$\sqrt{2}$时(O为坐标原点),求λ的值.

查看答案和解析>>

同步练习册答案