精英家教网 > 高中数学 > 题目详情
12.利用换底公式证明:logab•logbc•logca=1.

分析 将已知条件中的对数都转化为以10为底的对数,然后通过约分证得结论.

解答 证明:logab•logbc•logca
=$\frac{lgb}{lga}$•$\frac{lgc}{lgb}$•$\frac{lga}{lgc}$
=1,
即logab•logbc•logca=1.

点评 本题考查了对数的换底公式,难度不大,掌握换底公式是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知(x-5)2+y2=3,求$\frac{y}{x}$的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f($\frac{1}{2}$${log}_{\frac{1}{2}}$x)=$\frac{x-1}{x+1}$.
(1)求f(x)的解析式;
(2)判断f(x)的奇偶性;
(3)判断f(x)的单调性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知[x]表示不超过x的最大整数,如:[3]=3,[2.3]=2,[-1.7]=-2,则方程[log2x]+1=[2sinx]的解为1≤x<2且x$≠\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知四边形ABCD是边长为6的正方形,E为AB的中点,点F在BC上,且BF:FC=2:1,AF与EC相交于点P,求四边形APCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知集合A={x|$(\frac{1}{2})^{{x}^{2}-5x+4}$≥1},B={x|x2-2ax+a+2≤0},若B⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=4x+k•2x+1,m(x)=2x+$\frac{1}{{2}^{x}}$
(1)当k=-4时,求函数f(x)在x∈[0,2]上的最小值;
(2)判断m(x)的奇偶性,并利用定义证明函数m(x)在(0,+∞)上单调递增;
(3)设g(x)=|$\frac{f(x)}{{4}^{x}+{2}^{x}+1}$|,若存在x1,x2,x3∈[-1,log2$\frac{3+\sqrt{5}}{2}$],使得g(x1),g(x2),g(x3)为三边长的三角形不存在,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设集合B={a1,a2,…,an},m<n,m,n∈N*,则满足条件{a1,a2…,am}⊆A⊆B的集合A的个数是2n-m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设[x]表示不大于x的最大整数,则对任意实数x,求证:[x]+[x+$\frac{1}{2}$]=[2x].

查看答案和解析>>

同步练习册答案