精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以原点为极点, 轴正半轴为极轴建立极坐标系.若曲线的极坐标方程为, 点的极坐标为,在平面直角坐标系中,直线经过点,斜率为.

(1)写出曲线的直角坐标方程和直线的参数方程;

(2)设直线与曲线相交于两点,求的值.

【答案】(1) 直线的参数方程为 (参数).

(2) .

【解析】分析:(1)根据 是参数),将左右两边同时乘以。将点P的极坐标化为直角坐标,根据斜率写出直线的参数方程。

(2)AB设成参数方程,联立曲线C整理化简利用韦达定理求的值。

详解:

(1)曲线的方程为

的直角坐标为(0,3)

直线的参数方程为 (参数).

(2),将直线的参数方程代入曲线的方程得

整理得, 由韦达定理可知, ,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在40分以下的学生后,共有男生300名,女生200名.现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生成绩分为6组,得到如下所示频数分布表.

(1)估计男、女生各自的平均分(同一组数据用该组区间中点值作代表),从计算结果看,数学成绩与性别是否有关;

(2)规定80分以上为优分(含80分)请你根据已知条件作出2×2列联表并判断是否有90%以上的把握认为“数学成绩与性别有关”.

附表及公式:

P(K2k)

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:

其中=1,2,3,4,5,6,7.

(1)以每天进店人数为横轴,每天商品销售件数为纵轴,画出散点图;

(2)求线性回归方程;(结果保留到小数点后两位)

(参考数据:=3 245, =25, =15.43, =5 075)

(3)预测进店人数为80人时,商品销售的件数.(结果保留整数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制,均为整数)分成 六组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题:

(1)求分数内的频率,并补全这个频率分布直方图;

(2)从频率分布直方图中,估计本次考试成绩的中位数;

(3)若从第1组和第6组两组学生中,随机抽取2人,求所抽取2人成绩之差的绝对值大于10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=x2+alnx

1)若a=﹣1,求函数fx)的极值,并指出极大值还是极小值;

2)若a=1,求函数fx)在[1e]上的最值;

3)若a=1,求证:在区间[1+∞)上,函数fx)的图象在gx=x3的图象下方.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中.己知直线l的参数方程为 (t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=4.
(1)写出直线l的普通方程与曲线C的直角坐标系方程;
(2)直线l与曲线C相交于A、B两点,求∠AOB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n三位递增数”(137,359,567).

在某次数学趣味活动中,每位参加者需从所有的三位递增数中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的三位递增数的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.

(1)写出所有个位数字是5三位递增数”;

(2)若甲参加活动,求甲得分X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,命题:实数满足不等式;命题:实数满足不等式,若的充分不必要条件,则实数的取值范围是__________

查看答案和解析>>

同步练习册答案