分析 (1)连接AC交EB于点G,推导出PA∥FG,从而CG=2GA,由△GBC~△GEA,得EA=1,ED=2,推导出PE⊥AD,由此能证明PE⊥平面ABCD.
(2)以EA,EB,EP所在直线分别为x轴,y轴,z轴建立空间直角坐标系,利用向量法能求出二面角P-EB-F的余弦值.
解答 证明:(1)如图连接AC交EB于点G,![]()
因为PA∥平面EFB,所以PA∥FG,
由FC=2FP,所以CG=2GA,
又△GBC~△GEA,所以BC=2EA,
所以EA=1,ED=2,
又因为PA2+PD2=AD2,所以△APD是直角三角形,
又$\frac{DE}{EA}={(\frac{PD}{PA})^2}$,所以PE⊥AD,![]()
又因为侧面PAD⊥底面ABCD,
所以PE⊥平面ABCD.
解:(2)因为DE=BC,DE∥BC,所以BE∥CD,
又EA⊥EB,如图,以EA,EB,EP所在直线分别为x轴,y轴,z轴建立空间直角坐标系,
则A(1,0,0),B(0,3,0),C(-2,3,0),
$PE=\sqrt{P{A^2}-A{E^2}}=\sqrt{2}$,所以$P(0,0,\sqrt{2})$,
所以$\overrightarrow{EF}=\overrightarrow{EP}+\frac{1}{3}\overrightarrow{PC}=(0,0,\sqrt{2})+(-\frac{2}{3},1,-\frac{{\sqrt{2}}}{3})$=$(-\frac{2}{3},1,\frac{{2\sqrt{2}}}{3})$,
设平面EFB的法向量为$\overrightarrow n=(x,y,z)$,
则$\overrightarrow n⊥\overrightarrow{EF}⇒-\frac{2}{3}x+y+\frac{{2\sqrt{2}}}{3}z=0$,$\overrightarrow n⊥\overrightarrow{EB}⇒y=0$,
令z=1,则$x=\sqrt{2}$,所以$\overrightarrow n=(\sqrt{2},0,1)$,
又因为平面PEB的法向量$\overrightarrow{EA}=(1,0,0)$,
所以$cos<\overrightarrow n,\overrightarrow{EA}>=\frac{{\sqrt{2}}}{{1×\sqrt{2+1}}}=\frac{{\sqrt{6}}}{3}$,
即所求二面角的余弦值是$\frac{{\sqrt{6}}}{3}$.
点评 本题考查线面垂直的证明,考查二面角的余弦值的求法,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | M=P | B. | M>P | C. | M<P | D. | 不能确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $\sqrt{3}$ | D. | $-\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com