精英家教网 > 高中数学 > 题目详情
8.如图,四棱锥P-ABCD中,侧面PAD⊥底面ABCD,AD∥BC,AD⊥DC,AD=DC=3,BC=2,$PD=\sqrt{2}PA=\sqrt{6}$,点F在棱PG上,且FC=2FP,点E在棱AD上,且PA∥平面BEF.
(1)求证:PE⊥平面ABCD;
(2)求二面角P-EB-F的余弦值.

分析 (1)连接AC交EB于点G,推导出PA∥FG,从而CG=2GA,由△GBC~△GEA,得EA=1,ED=2,推导出PE⊥AD,由此能证明PE⊥平面ABCD.
(2)以EA,EB,EP所在直线分别为x轴,y轴,z轴建立空间直角坐标系,利用向量法能求出二面角P-EB-F的余弦值.

解答 证明:(1)如图连接AC交EB于点G,
因为PA∥平面EFB,所以PA∥FG,
由FC=2FP,所以CG=2GA,
又△GBC~△GEA,所以BC=2EA,
所以EA=1,ED=2,
又因为PA2+PD2=AD2,所以△APD是直角三角形,
又$\frac{DE}{EA}={(\frac{PD}{PA})^2}$,所以PE⊥AD,
又因为侧面PAD⊥底面ABCD,
所以PE⊥平面ABCD.
解:(2)因为DE=BC,DE∥BC,所以BE∥CD,
又EA⊥EB,如图,以EA,EB,EP所在直线分别为x轴,y轴,z轴建立空间直角坐标系,
则A(1,0,0),B(0,3,0),C(-2,3,0),
$PE=\sqrt{P{A^2}-A{E^2}}=\sqrt{2}$,所以$P(0,0,\sqrt{2})$,
所以$\overrightarrow{EF}=\overrightarrow{EP}+\frac{1}{3}\overrightarrow{PC}=(0,0,\sqrt{2})+(-\frac{2}{3},1,-\frac{{\sqrt{2}}}{3})$=$(-\frac{2}{3},1,\frac{{2\sqrt{2}}}{3})$,
设平面EFB的法向量为$\overrightarrow n=(x,y,z)$,
则$\overrightarrow n⊥\overrightarrow{EF}⇒-\frac{2}{3}x+y+\frac{{2\sqrt{2}}}{3}z=0$,$\overrightarrow n⊥\overrightarrow{EB}⇒y=0$,
令z=1,则$x=\sqrt{2}$,所以$\overrightarrow n=(\sqrt{2},0,1)$,
又因为平面PEB的法向量$\overrightarrow{EA}=(1,0,0)$,
所以$cos<\overrightarrow n,\overrightarrow{EA}>=\frac{{\sqrt{2}}}{{1×\sqrt{2+1}}}=\frac{{\sqrt{6}}}{3}$,
即所求二面角的余弦值是$\frac{{\sqrt{6}}}{3}$.

点评 本题考查线面垂直的证明,考查二面角的余弦值的求法,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知数列{an}满足a1=a,${a_{n+1}}=(2|{sin\frac{nπ}{2}}|-1){a_n}+2n$.
(Ⅰ)请写出a2,a3,a4,a5的值;
(Ⅱ)猜想数列{an}的通项公式,不必证明;
(Ⅲ)请利用(Ⅱ)中猜想的结论,求数列{an}的前120项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.凸十边形的对角线的条数为(  )
A.10B.35C.45D.90

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若方程$\frac{1}{2}$kx-lnx=0有两个实数根,则k取值范围是(0,$\frac{2}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=exsinx.
(1)求函数f(x)的单调区间;
(2)如果对于任意的$x∈[0,\frac{π}{2}]$,f(x)≥kx恒成立,求实数k的取值范围;
(3)设函数F(x)=f(x)+ex•cosx,$x∈[-\frac{2015π}{2},\frac{2017π}{2}]$.过点$M(\frac{π-1}{2},0)$作函数F(x)的图象的所有切线,令各切点的横坐标构成数列{xn},求数列{xn}的所有项之和S的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.证明不等式:$\sqrt{6}+\sqrt{7}>2\sqrt{2}+\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设a,b,c的平均数为M,a与b的平均数为N,N与c的平均数为P,若a>b>c,则M与P的大小关系是(  )
A.M=PB.M>PC.M<PD.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知方程x2+bx+c=0有两个不等的实根x1,x2,设C={x1,x2},A={1,3,5,7,9},B={1,4,7,10},若A∩C=∅,C∩B=C,试求b、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=3x+sinx-2cosx的图象在点A(x0,f(x0))处的切线斜率为3,则tanx0的值是(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\sqrt{3}$D.$-\sqrt{3}$

查看答案和解析>>

同步练习册答案