精英家教网 > 高中数学 > 题目详情
设k=
π
0
(sinx-cosx)dx,若(1-kx)8=a0+a1x+a2x2+…+a8x8,则a1+a2+a3+…+a8=(  )
A、-1B、0C、lD、256
考点:二项式系数的性质
专题:计算题,二项式定理
分析:利用微积分基本定理求出k的值,通过对二项式中的x赋值求出常数项,a0+a1+a2+a3+…+a8,即可得出结论.
解答: 解:k=
π
0
(sinx-cosx)dx
=(-cosx-sinx)
|
π
0
=2,
令x=0得,a0=1,
令x=1得,a0+a1+a2+a3+…+a8=1,
∴a1+a2+a3+…+a8=0.
故选:B.
点评:求二项展开式的系数和问题常用的方法是通过观察给二项式中x的赋值即赋值求系数和.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l的法向量为
n
=(2,1)
,则该直线的倾斜角为
 
.(用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式22x≤3•2x+
x
+4•22
x
的解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=(sinx+cosx)2的最小正周期为(  )
A、2π
B、π
C、
π
2
D、
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U={1,2,3,4,5},集合M={1,2,4},则集合∁UM=(  )
A、{1,2,4}
B、{3,4,5}
C、{2,5}
D、{3,5}

查看答案和解析>>

科目:高中数学 来源: 题型:

给出定义:若 m-
1
2
<x≤m+
1
2
(其中m为整数),则m叫做离实数x最近的整数,记作{x},即{x}=m.在此基础上给出下列关于函数f(x)=x-{x}的四个命题:
①y=f(x)的定义域是R,值域是(-
1
2
1
2
];
②点(k,0)是y=f(x)的图象的对称中心,其中k∈Z;
③函数y=f(x)的最小正周期为1;
④函数y=f(x)在(-
1
2
3
2
]上是增函数.
则上述命题中真命题的序号是(  )
A、①④B、①③C、②③D、②④

查看答案和解析>>

科目:高中数学 来源: 题型:

先将函数y=f(x)的图象向右移
π
6
个单位,再将所得的图象作关于直线x=
π
4
的对称变换,得到y=sin(-2x+
π
3
)
的函数图象,则f(x)的解析式是(  )
A、y=sin(-2x+
π
3
)
B、y=sin(-2x-
π
3
)
C、y=sin(2x-
π
3
)
D、y=sin(2x+
π
3
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
x
a
cosθ+
y
b
sinθ=1,
x
a
sinθ-
y
b
cosθ=1.求证:
x2
a2
+
y2
b2
=2.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:sin2α-
sinαcosα
sin2α
+cos2α

查看答案和解析>>

同步练习册答案