ϱíΪij°àÓ¢Óï¼°Êýѧ³É¼¨µÄ·Ö²¼£¬Ñ§Éú¹²ÓÐ50ÈË£¬³É¼¨·ÖΪ1¡«5¸öµµ´Î£®ÀýÈç±íÖÐËùʾӢÓï³É¼¨Îª4·ÖÇÒÊýѧ³É¼¨Îª2·ÖµÄѧÉú¹²ÓÐ5ÈË£¬½«È«°àѧÉúµÄÐÕÃû¿¨Æ¬»ìÔÚÒ»Æð£¬ÈÎȡһÕÅ£¬¸Ã¿¨Æ¬Ñ§ÉúµÄÓ¢Óï³É¼¨Îªx£¬Êýѧ³É¼¨Îªy£¬Éèx¡¢yÎªËæ»ú±äÁ¿£¨×¢£ºÃ»ÓÐÏàͬÐÕÃûµÄѧÉú£©£®
      y
x
Êý           ѧ
54321
Ó¢
 
 
Óï
513101
420751
321093
21b60a
100113
£¨1£©·Ö±ðÇóx=1µÄ¸ÅÂʼ°x¡Ý3ÇÒy=3µÄ¸ÅÂÊ£»
£¨2£©ÈôyµÄÆÚÍûֵΪ
134
50
£¬ÊÔÈ·¶¨a¡¢bµÄÖµ£®
¿¼µã£ºÀëÉ¢ÐÍËæ»ú±äÁ¿µÄÆÚÍûÓë·½²î,¹Åµä¸ÅÐͼ°Æä¸ÅÂʼÆË㹫ʽ
רÌ⣺¸ÅÂÊÓëͳ¼Æ
·ÖÎö£º£¨1£©ÓÉÌâÒâÀûÓõȿÉÄÜʼþ¸ÅÂʼÆË㹫ʽÄÜÇó³öx=1µÄ¸ÅÂʺÍx¡Ý3ÇÒy=3µÄ¸ÅÂÊ£®
£¨2£©ÓÉÒÑÖªµÃa+b=2£¬ÇÒ5¡Á
6
50
+4¡Á
b+4
50
+3¡Á
15
50
+2¡Á
15
50
+1¡Á
8+a
50
=
133
50
£¬ÓÉ´ËÄÜÇó³öa¡¢bµÄÖµ£®
½â´ð£º ½â£º£¨1£©ÓÉÌâÒâÖªx=1µÄ¸ÅÂÊ£º
P£¨x=1£©=
1+3+1
50
=
1
10
£®
x¡Ý3ÇÒy=3µÄ¸ÅÂÊ£º
P£¨x¡Ý3ÇÒy=3£©=
8
50
=
4
25
£®
£¨2£©¡ßa+b=2£¬
ÓÖ5¡Á
6
50
+4¡Á
b+4
50
+3¡Á
15
50
+2¡Á
15
50
+1¡Á
8+a
50
=
133
50
£¬
ÕûÀí£¬µÃa+4b=5£¬
½âµÃa=1£¬b=1£®
µãÆÀ£º±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄÊýѧÆÚÍûµÄÓ¦Óã¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÔÚбÈýÀâÖùABC-A1B1C1ÖУ¬²àÃæA1ACC1ÊDZ߳¤Îª2µÄÁâÐΣ¬¡ÏA1AC=60¡ã£®ÔÚÃæABCÖУ¬AB=2
3
£¬BC=4£¬MΪBCµÄÖе㣬¹ýA1£¬B1£¬MÈýµãµÄÆ½Ãæ½»ACÓÚµãN£®
£¨1£©ÇóÖ¤£ºNΪACÖе㣻
£¨2£©Æ½ÃæA1B1MN¡ÍÆ½ÃæA1ACC1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¶¯µãPµ½¶¨µãF£¨1£¬0£©µÄ¾àÀëÓëµãPµ½¶¨Ö±Ïßl£ºx=4µÄ¾àÀëÖ®±ÈΪ
1
2
£®
£¨1£©Ç󶯵ãPµÄ¹ì¼£CµÄ·½³Ì£»
£¨2£©ÉèM¡¢NÊÇÖ±ÏßlÉϵÄÁ½¸öµã£¬µãEÓëµãF¹ØÓÚÔ­µãO¶Ô³Æ£¬Èô
EM
FN
=0£¬Çó|MN|µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚ¼«×ø±êϵÖУ¬Ô²CÊÇÒÔµãC£¨2£¬-
¦Ð
6
£©ÎªÔ²ÐÄ¡¢2Ϊ°ë¾¶µÄÔ²£®
£¨1£©ÇóÔ²CµÄ¼«×ø±ê·½³Ì£»
£¨2£©ÇóÔ²C±»Ö±Ïßl£º¦È=-
5¦Ð
12
Ëù½ØµÃµÄÏÒ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÀⳤΪ1µÄÕý·½ÌåABCD-A1B1C1D1µÄ¶¥µã¶¼ÔÚÇòÃæÉÏ£¬ÔòAC1µÄ³¤ÊÇ
 
£¬ÇòµÄ±íÃæ»ýÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÔÚËÄÀâ×¶P-ABCDÖУ¬µØÃæABCDÊÇÕý·½ÐΣ¬²àÀâPD¡Íµ×ÃæABCD£¬PD=DC£¬µãEÊÇPCµÄÖе㣮
£¨¢ñ£©ÇóÖ¤£ºPA¡ÎÆ½ÃæEDB£»
£¨¢ò£©ÇóÖ¤£ºDE¡ÍÆ½ÃæPBC£»
£¨¢ó£©Çó¶þÃæ½ÇE-BD-CµÄÆ½Ãæ½ÇµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬µÈ±ßÈý½ÇÐÎABCÓëÖ±½ÇÌÝÐÎABDEËùÔ򵀮½Ãæ´¹Ö±£¬BD¡ÎAE£¬BD=2AE£¬AE¡ÍAB£®
£¨¢ñ£©ÈôFΪCDÖе㣬֤Ã÷£ºEF¡ÍÆ½ÃæBCD£»
£¨¢ò£©ÔÚÏß¶ÎACÉÏÊÇ·ñ´æÔÚµãN£¬Ê¹CD¡ÎÆ½ÃæBEN£¬Èô´æÔÚ£¬Çó
AN
NC
µÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªAC¡ÍÆ½ÃæCDE£¬BD¡ÎAC£¬¡÷ECDΪµÈ±ßÈý½ÇÐΣ¬FΪED±ßµÄÖе㣬CD=BD=2AC=2 
£¨1£©ÇóÖ¤£ºCF¡ÎÃæABE£»
£¨2£©ÇóÖ¤£ºÃæABE¡ÍÆ½ÃæBDE£º
£¨3£©ÇóÈýÀâ×¶F-ABEµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒÂú×ãSn+1=4an+2£¬£¨n¡ÊN*£©£¬a1=2£¬
£¨1£©Éèbn=an+1-¦Ëan£¬ÊýÁÐ{bn}ΪµÈ±ÈÊýÁУ¬ÇóʵÊý¦ËµÄÖµ£»
£¨2£©Éècn=
an
2n
£¨n¡ÊN*£©£¬ÇóÊýÁÐ{cn}µÄͨÏʽ£»
£¨3£©Áîdn=£¨
1
2log2
an
n
-
1
log2
an+1
n+1
£©•2n+1£¬ÇóÊýÁÐ{dn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸