精英家教网 > 高中数学 > 题目详情
15.若α是第四象限角,且$cosα=\frac{3}{5}$,则tan2α=(  )
A.$-\frac{4}{3}$B.$-\frac{24}{7}$C.$\frac{24}{7}$D.$\frac{24}{25}$

分析 由已知利用同角三角函数基本关系式可求sinα,tanα,进而利用二倍角的正切函数公式即可计算得解tan2α.

解答 解:∵α是第四象限角,且$cosα=\frac{3}{5}$,
∴sinα=-$\sqrt{1-co{s}^{2}α}$=-$\frac{4}{5}$,
∴tanα=$\frac{sinα}{cosα}$=-$\frac{4}{3}$,
∴tan2α=$\frac{2tanα}{1-ta{n}^{2}α}$=$\frac{2×(-\frac{4}{3})}{1-(-\frac{4}{3})^{2}}$=$\frac{24}{7}$.
故选:C.

点评 本题主要考查了同角三角函数基本关系式,二倍角的正切函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.执行如图所示的程序框图,输出的n值为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图的程序框图,则输出x的值是(  )
A.2016B.1024C.$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知扇形周长为8,面积为4,则圆心角为2弧度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},则∁UA={4,6,7,9,10}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在数列{an}中,a1=2,an+1=3an+2.
(1)求数列{an}的通项公式;
(2)若bn=an?log3(an+1),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知数列{an}满足:an=$\left\{\begin{array}{l}{1,1≤n≤2016}\\{2•(\frac{1}{3})^{n-2016},n≥2017}\end{array}\right.$,设Sn表示数列{an}的前n项和.则下列结论正确的是(  )
A.$\lim_{n→∞}{a_n}$和$\lim_{n→∞}{S_n}$都存在B.$\lim_{n→∞}{a_n}$和$\lim_{n→∞}{S_n}$都不存在
C.$\lim_{n→∞}{a_n}$存在,$\lim_{n→∞}{S_n}$不存在D.$\lim_{n→∞}{a_n}$不存在,$\lim_{n→∞}{S_n}$存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设函数y=f(x)的图象与y=2x-a的图象关于直线y=-x对称,且f(-2)+f(-4)=1,则a=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.抛掷两枚质地均匀的正四面体骰子,其4个面分别标有数字1,2,3,4,记每次抛掷朝下一面的数字中较大者为a(若两数相等,则取该数),平均数为b,则事件“a-b=1”发生的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{3}{8}$

查看答案和解析>>

同步练习册答案