精英家教网 > 高中数学 > 题目详情
1.直线l:x-2y+2=0过椭圆的左焦点F1和一个顶点B,该椭圆的离心率为$\frac{{2\sqrt{5}}}{5}$.

分析 根据题意,由直线的方程可得其与坐标轴交点的坐标,即可得椭圆中焦点F1的坐标和顶点B的坐标,即可得c、b的值,由椭圆的几何性质可得a的值,由离心率公式计算可得答案.

解答 解:根据题意,直线l的方程为x-2y+2=0,与x轴交点坐标为(-2,0),与y轴交点坐标为(0,1);
又有直线l:x-2y+2=0过椭圆的左焦点F1和一个顶点B,
则有F1的坐标(-2,0),顶点B的坐标为(0,1),
则有c=2,b=1,
a=$\sqrt{4+1}$=$\sqrt{5}$,
故其离心率e=$\frac{c}{a}$=$\frac{{2\sqrt{5}}}{5}$;
故答案为:$\frac{{2\sqrt{5}}}{5}$.

点评 本题考查椭圆的几何性质,关键是确定椭圆的焦点位置.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知O是坐标原点,点A(-1,1),若点M(x,y)为平面区域$\left\{\begin{array}{l}x+y≥2\\ x≤1\\ y≤2\end{array}\right.$上的一个动点,则 $\overrightarrow{OA}•\overrightarrow{OM}$的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直线l:x-y+3=0和圆C:(x-1)2+y2=1,P为直线l上一动点,过P作直线m与圆C切于点A,B.
(Ⅰ)求|PA|的最小值;
(Ⅱ)当|PA|最小时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=x2+mx-2m-1仅存在整数零点,则实数m的集合为{0,-8}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.执行如图所示的程序框图,则输出的结果为(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=2sinxcosx+2$\sqrt{3}$cos2x-$\sqrt{3}$,则函数f(x)的最小正周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.方程sin2x=cosx,x∈[0,2π]的解集是{$\frac{π}{2}$,$\frac{3π}{2}$,$\frac{π}{6}$,$\frac{5π}{6}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在等差数列{an}中,若a2+a4+a6+a8+a10=80,则${a}_{7}-\frac{1}{2}{a}_{8}$的值为(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数$f(x)=ln({\sqrt{{x^2}+1}-x})$,若a,b满足不等式f(a2-2a)+f(2b-b2)≤0,则当1≤a≤4时,2a-b的最大值为(  )
A.1B.10C.5D.8

查看答案和解析>>

同步练习册答案