分析 分别取x=$\frac{π}{6}$,x=$\frac{π}{3}$,计算sinx和tanx比较大小,理由三角函数线得出结论.
解答
解:当x=$\frac{π}{6}$时,sinx=$\frac{1}{2}$,tanx=$\frac{\sqrt{3}}{3}$,此时有sinx<x<tanx.
sinx<x<tanx在(0,$\frac{π}{2}$)上一定成立.
理由如下:
作单位圆O,设α终边与单位圆交于点A,过A作AB⊥x轴于B,过单位点C(1,0)作CD⊥x轴交α终边于D.
则AB=sinα=sinx,CD=tanα=tanx,$\widehat{AC}$=α=x,
由图可知S△OAC<S扇形OAC<S△OCD,
∴$\frac{1}{2}×OC×AB$<$\frac{1}{2}×OC×\widehat{AC}$<$\frac{1}{2}×OC×CD$,
∴AB<$\widehat{AC}$<CD,即sinx<x<tanx在(0,$\frac{π}{2}$)上恒成立.
点评 本题考查了三角函数的大小比较,作出三角函数线是解题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{3}{2}$ | B. | $\frac{3}{2}$ | C. | 6 | D. | -6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {bn}是等差数列,{cn}是等比数列 | B. | {bn}是等比数列,{cn}是等差数列 | ||
| C. | {bn}是等差数列,{cn}是等差数列 | D. | {bn}是等比数列,{cn}是等比数列 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{4}$ | B. | -$\frac{\sqrt{2}}{4}$ | C. | 2$\sqrt{2}$ | D. | -2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 存在α∈M,使得f(x1),f(x2),f(x3)依次成等差数列 | |
| B. | 存在α∈M,使得f(x1),f(x2),f(x3)依次成等比数列 | |
| C. | 当α=2时,存在正数λ,使得f(x1),f(x2),f(x3)-λ依次成等差数列 | |
| D. | 任意α∈M,都存在正数λ>1,使得λf(x1),f(x2),f(x3)依次成等比数列 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com