精英家教网 > 高中数学 > 题目详情
16.四面体ABCD的外接球为O,AD⊥平面ABC,AD=2,△ABC为边长为3的正三角形,则球O的表面积为(  )
A.32πB.16πC.12πD.$\frac{32}{3}$π

分析 由正弦定理可得△ABC外接圆的半径,利用勾股定理可得四面体ABCD的外接球的半径,即可求出球O的表面积.

解答 解:由题意,由正弦定理可得△ABC外接圆的半径为$\frac{1}{2}×\frac{3}{sin60°}$=$\sqrt{3}$,
∵AD⊥平面ABC,AD=2,
∴四面体ABCD的外接球的半径为$\sqrt{1+3}$=2,
∴球O的表面积为4π×4=16π.
故选:B.

点评 本题考查球O的表面积,考查学生的计算能力,确定四面体ABCD的外接球的半径是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)定义在R上,且周期为3,当1≤x≤3时,f(x)=x2+4.
(1)求f(5)+f(7)的值;
(2)若关于x的方程f(x)=mx2(m∈R)在区间[4,6]有实根,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知某几何体的三视图如图所示,则该几何体的体积为$\frac{\sqrt{3}π}{4}$;表面积为$\frac{9π}{4}+\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点与抛物线C2:y2=4x的焦点F重合.椭圆C1与抛物线C2在第一象限内的交点为P,|PF|=$\frac{5}{3}$.
(1)求椭圆C1的方程;
(2)已知直线x-y+m=0与椭圆C1交于不同的两点A、B,且线段AB的中点不在圆x2+y2=$\frac{25}{49}$内,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时.f(x)=|x2-4x+3|,若函数y=f(x)-a在区间[-4,4]上有8个互不相同的零点,则实数a的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=(2x2-a-1)ex
(Ⅰ)若函数f(x)在[-2,2]上是单调增函数,求实数a的取值范围;
(Ⅱ)若f(x)有两个不同的极值点m,n,满足m+n≤mn+1,求f(a)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.过椭圆 $\frac{x^2}{16}$+$\frac{y^2}{9}$=1的右焦点F2作直线l交椭圆于A、B两点,F1是椭圆的左焦点,则△AF1B 的周长为(  )
A.20B.16C.12D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系中,已知点A(1,0),点B在直线l:x=-1上运动,过点B与l垂直的直线和线段AB的垂直平分线相交于点M.
(1)求动点M的轨迹E的方程;
(2)过(1)中轨迹E上的点P (1,2)作两条直线分别与轨迹E相交于C(x1,y1),D(x2,y2)两点.试探究:当直线PC,PD的斜率存在且倾斜角互补时,直线CD的斜率是否为定值?若是,求出这个定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数y=cos(2x+$\frac{π}{3}$)的图象向左平移φ个单位后关于原点对称(|φ|<$\frac{π}{4}$),则实数φ可以为(  )
A.$-\frac{π}{6}$B.$-\frac{π}{12}$C.$\frac{π}{12}$D.$\frac{π}{6}$

查看答案和解析>>

同步练习册答案