分析 已知等式利用同角三角函数基本关系变形,表示出cosx即可.
解答 解:∵x,y∈(0,$\frac{π}{2}$),且有2sinx=$\sqrt{6}$siny,即sinx=$\frac{\sqrt{6}}{2}$siny,tanx=$\frac{sinx}{cosx}$=$\sqrt{3}$tany,
∴cosx=$\frac{sinx}{\sqrt{3}tany}$=$\frac{\frac{\sqrt{6}}{2}siny}{\sqrt{3}•\frac{siny}{cosy}}$=$\frac{\sqrt{2}}{2}$cosy,
∵sin2y+cos2y=1,
∴$\frac{2}{3}$sin2x+2cos2x=1,
∵sin2x+cos2x=1,
∴cos2x=$\frac{1}{4}$,
则cosx=$\frac{1}{2}$,
故答案为:$\frac{1}{2}$
点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{{{(n+1)}^2}}}{4}$ | B. | $\frac{n(n+3)}{4}$ | C. | $\frac{n(n+1)}{2}$ | D. | $\frac{{{n^2}+1}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,2] | B. | [0,2] | C. | [0,+∞) | D. | [-1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 3 | C. | $\sqrt{10}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|0≤x≤2} | B. | {x|0<x<2} | C. | {x|-1≤x<0} | D. | {x|-1<x≤0} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 偶函数 | B. | 奇函数 | ||
| C. | 既是偶函数,也是奇函数 | D. | 既非偶函数,也非奇函数 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com