精英家教网 > 高中数学 > 题目详情
1.已知($\root{3}{x}$+2x22n的展开式的二项式系数之和比(5x-3)n的展开式的所有项的系数之和大于992.
(1)求n的值;
(2)求($\sqrt{x}$-$\frac{1}{\root{3}{x}}$)n的展开式的常数项.

分析 (1)由题意可得22n-(5-3)n=992,求得n=5;
(2)写出($\sqrt{x}$-$\frac{1}{\root{3}{x}}$)5的展开式的通项公式,由x得指数等于0求得r值,则常数项可求.

解答 解:(1)由题意可得22n-(5-3)n=992,解得2n=32,n=5;
(2)($\sqrt{x}$-$\frac{1}{\root{3}{x}}$)n =($\sqrt{x}$-$\frac{1}{\root{3}{x}}$)5
由${T}_{r+1}={C}_{5}^{r}(\sqrt{x})^{5-r}(-\frac{1}{\root{3}{x}})^{r}$=$(-1)^{r}{C}_{5}^{r}{x}^{\frac{15-5r}{6}}$.
令15-5r=0,得r=3.
∴($\sqrt{x}$-$\frac{1}{\root{3}{x}}$)n的展开式的常数项为$-{C}_{5}^{3}=-10$.

点评 本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设$\overrightarrow{a}$,$\overrightarrow{b}$是两个非零向量,以下三个说法中正确的有(  )个
①若$\overrightarrow{a}$∥$\overrightarrow{b}$,则向量$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为|$\overrightarrow{a}$|;
②若$\overrightarrow{a}$•$\overrightarrow{b}$<0,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为钝角;
③若|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|-|$\overrightarrow{b}$|,则存在实数λ,使得$\overrightarrow{b}$=λ$\overrightarrow{a}$.
A.0B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如果集合A满足“若x∈A,则-x∈A”,那么就称A为对称集合.已知A={2x,0,x2+x},且A是对称集合,集合B是自然数集,则A∩B={0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知圆心C在直线2x+y=0上,且圆C夹在两条平行线l1:x+y+5=0与l2:x+y-3=0之间,圆上的点到两条平行线的最小距离均为$\sqrt{2}$,则圆C的标准方程为(  )
A.(x-1)2+(y-2)2=2B.(x-1)2+(y+2)2=4C.(x-2)2+(y+4)2=2D.(x-1)2+(y+2)2=2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.数列{an}的前n项和为Sn=n2+n.
(1)求an
(2)若bn=3n,数列cn=an•bn,求数列{cn}的前n项和Tn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数h(x)=aex-ln(x+b),其中a,b为常数,其函数图象在x=0处的切线方程为y=$\frac{1}{2}$x+1-ln2.
(1)求a,b的值;
(2)证明:aex>ln(x+b).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=-x2-2(-1+a)x+1,在x∈[2,+∞]时单调递减,则a≥-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.美国NBA篮球总决赛采用七局四胜制,即先胜四局的队获胜,比赛结束,2012年美国东部热火队与西部雷霆队分别进入总决赛,已知热火队与雷霆队的实力相当,即单局比赛每队获胜的概率均为$\frac{1}{2}$.若第一场比赛组织者可获门票收入30万元,以后每一场门票收入都比上一场增加10万美元,设各局比赛相互之间没有影响.
(1)求组织者在本次比赛中门票收入为180万元的概率;
(2)若组织者在本次比赛中获门票收入不低于330万美元,其概率为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知|1-z|+z=10-3i(i为虚数单位).
(1)求z;
(2)若z2+mz+n=1-3i,求实数m,n的值.

查看答案和解析>>

同步练习册答案