精英家教网 > 高中数学 > 题目详情

中,角所对的边分别为,且是方程的两个根,且,求:
(1)的度数;  (2)边的长度.

(1),(2)

解析试题分析:解题思路:(1)利用三角形三角和定理求角C;(2)根据方程的根与系数的关系求两根之和与积;利用余弦定理求边c.规律总结:解三角形问题,要分析题意,寻找边角关系,选择合适的定理.
注意点:在利用余弦定理求解时,要注意利用“整体思想”,减少计算量.
试题解析:(1),;

是方程的两根,
由余弦定理,得
考点:1.三角形三角和定理;2.方程的根与系数的关系;3.余弦定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在△ABC中,角A,B,C所对的边分别为,设S为△ABC的面积,且
(Ⅰ)求角A的大小;
(Ⅱ)若,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,所对的边分别为,且
(1)求的值;
(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,角A,B, C所对边分别为a,b,c,且
(1)求角A;
(2)若m,n,试求|mn|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角所对的边分别为,且
(1)求角的值;(2)若为锐角三角形,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sin B(tan A+tan C)=tan Atan C.
(1)求证:a,b,c成等比数列;
(2)若a=1,c=2,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

△ABC中,a、b、c分别是角A、B、C的对边,△ABC的周长为+2,且sinA+sinB=sinC.(1)求边c的长.   (2)若△ABC的面积为sinC,求角C的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的内角所对的边分别为.
(1)若成等差数列,证明:
(2)若成等比数列,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在中,,点的中点.

(1)求边的长;
(2)求的值和中线的长

查看答案和解析>>

同步练习册答案